Loading [MathJax]/extensions/tex2jax.js
LSST Applications g04dff08e69+fafbcb10e2,g0d33ba9806+3d21495239,g0fba68d861+4a282a2c93,g1ec0fe41b4+f536777771,g1fd858c14a+ae46bc2a71,g35bb328faa+fcb1d3bbc8,g4af146b050+9c38a215af,g4d2262a081+36f1e108ba,g53246c7159+fcb1d3bbc8,g5a012ec0e7+b20b785ecb,g60b5630c4e+3d21495239,g6273192d42+d9e7b43dd0,g67b6fd64d1+4086c0989b,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g87b7deb4dc+2198278b84,g8852436030+54b48a5987,g89139ef638+4086c0989b,g9125e01d80+fcb1d3bbc8,g94187f82dc+3d21495239,g989de1cb63+4086c0989b,g9d31334357+3d21495239,g9f33ca652e+83205baa3c,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+85d1f90f4c,gb58c049af0+f03b321e39,gb89ab40317+4086c0989b,gc0bb628dac+d11454dffd,gcf25f946ba+54b48a5987,gd6cbbdb0b4+af3c3595f5,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+a74c3eaa38,ge278dab8ac+d65b3c2b70,ge410e46f29+4086c0989b,gf23fb2af72+b3e27b8ebc,gf67bdafdda+4086c0989b,v29.0.0.rc6
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
utils.py
Go to the documentation of this file.
1# This file is part of gauss2d.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22import numpy as np
23
24
25def covar_to_ellipse(sigma_x_sq, sigma_y_sq, cov_xy, degrees=False):
26 """Convert covariance matrix terms to ellipse major axis, axis ratio and
27 position angle representation.
28
29 Parameters
30 ----------
31 sigma_x_sq, sigma_y_sq : `float` or array-like
32 x- and y-axis squared standard deviations of a 2-dimensional normal
33 distribution (diagonal terms of its covariance matrix).
34 Must be scalar or identical length array-likes.
35 cov_xy : `float` or array-like
36 x-y covariance of a of a 2-dimensional normal distribution
37 (off-diagonal term of its covariance matrix).
38 Must be scalar or identical length array-likes.
39 degrees : `bool`
40 Whether to return the position angle in degrees instead of radians.
41
42 Returns
43 -------
44 r_major, axrat, angle : `float` or array-like
45 Converted major-axis radius, axis ratio and position angle
46 (counter-clockwise from the +x axis) of the ellipse defined by
47 each set of input covariance matrix terms.
48
49 Notes
50 -----
51 The eigenvalues from the determinant of a covariance matrix are:
52 |a-m b|
53 |b c-m|
54 det = (a-m)(c-m) - b^2 = ac - (a+c)m + m^2 - b^2 = m^2 - (a+c)m + (ac-b^2)
55 Solving:
56 m = ((a+c) +/- sqrt((a+c)^2 - 4(ac-b^2)))/2
57 ...or equivalently:
58 m = ((a+c) +/- sqrt((a-c)^2 + 4b^2))/2
59
60 Unfortunately, the latter simplification is not as well-behaved
61 in floating point math, leading to square roots of negative numbers when
62 one of a or c is very close to zero.
63
64 The values from this function should match those from
65 `Ellipse.make_ellipse_major` to within rounding error, except in the
66 special case of sigma_x == sigma_y == 0, which returns a NaN axis ratio
67 here by default. This function mainly intended to be more convenient
68 (and possibly faster) for array-like inputs.
69 """
70 apc = sigma_x_sq + sigma_y_sq
71 x = apc/2
72 pm = np.sqrt(apc**2 - 4*(sigma_x_sq*sigma_y_sq - cov_xy**2))/2
73
74 r_major = x + pm
75 axrat = np.sqrt((x - pm)/r_major)
76 r_major = np.sqrt(r_major)
77 angle = np.arctan2(2*cov_xy, sigma_x_sq - sigma_y_sq)/2
78 return r_major, axrat, (np.degrees(angle) if degrees else angle)
79
80
81def gauss2dint(xdivsigma):
82 """Return the fraction of the total surface integral of a 2D Gaussian
83 contained with a given multiple of its dispersion.
84
85 Parameters
86 ----------
87 xdivsigma : `float`
88 The multiple of the dispersion to integrate to.
89
90 Returns
91 -------
92 frac : `float`
93 The fraction of the surface integral contained within an ellipse of
94 size `xdivsigma`.
95
96 Notes
97 -----
98 This solution can be computed as follows:
99
100 https://www.wolframalpha.com/input/?i=
101 Integrate+2*pi*x*exp(-x%5E2%2F(2*s%5E2))%2F(s*sqrt(2*pi))+dx+from+0+to+r
102 """
103 return 1 - np.exp(-xdivsigma**2/2.)
gauss2dint(xdivsigma)
Definition utils.py:81
covar_to_ellipse(sigma_x_sq, sigma_y_sq, cov_xy, degrees=False)
Definition utils.py:25