LSST Applications g063fba187b+cac8b7c890,g0f08755f38+6aee506743,g1653933729+a8ce1bb630,g168dd56ebc+a8ce1bb630,g1a2382251a+b4475c5878,g1dcb35cd9c+8f9bc1652e,g20f6ffc8e0+6aee506743,g217e2c1bcf+73dee94bd0,g28da252d5a+1f19c529b9,g2bbee38e9b+3f2625acfc,g2bc492864f+3f2625acfc,g3156d2b45e+6e55a43351,g32e5bea42b+1bb94961c2,g347aa1857d+3f2625acfc,g35bb328faa+a8ce1bb630,g3a166c0a6a+3f2625acfc,g3e281a1b8c+c5dd892a6c,g3e8969e208+a8ce1bb630,g414038480c+5927e1bc1e,g41af890bb2+8a9e676b2a,g7af13505b9+809c143d88,g80478fca09+6ef8b1810f,g82479be7b0+f568feb641,g858d7b2824+6aee506743,g89c8672015+f4add4ffd5,g9125e01d80+a8ce1bb630,ga5288a1d22+2903d499ea,gb58c049af0+d64f4d3760,gc28159a63d+3f2625acfc,gcab2d0539d+b12535109e,gcf0d15dbbd+46a3f46ba9,gda6a2b7d83+46a3f46ba9,gdaeeff99f8+1711a396fd,ge79ae78c31+3f2625acfc,gef2f8181fd+0a71e47438,gf0baf85859+c1f95f4921,gfa517265be+6aee506743,gfa999e8aa5+17cd334064,w.2024.51
LSST Data Management Base Package
Loading...
Searching...
No Matches
image.py
Go to the documentation of this file.
1# This file is part of scarlet_lite.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22from __future__ import annotations
23
24import operator
25from typing import Any, Callable, Sequence, cast
26
27import numpy as np
28from numpy.typing import DTypeLike
29
30from .bbox import Box
31from .utils import ScalarLike, ScalarTypes
32
33__all__ = ["Image", "MismatchedBoxError", "MismatchedBandsError"]
34
35
36class MismatchedBandsError(Exception):
37 """Attempt to compare images with different bands"""
38
39
40class MismatchedBoxError(Exception):
41 """Attempt to compare images in different bounding boxes"""
42
43
44def get_dtypes(*data: np.ndarray | Image | ScalarLike) -> list[DTypeLike]:
45 """Get a list of dtypes from a list of arrays, images, or scalars
46
47 Parameters
48 ----------
49 data:
50 The arrays to use for calculating the dtype
51
52 Returns
53 -------
54 result:
55 A list of datatypes.
56 """
57 dtypes: list[DTypeLike] = [None] * len(data)
58 for d, element in enumerate(data):
59 if hasattr(element, "dtype"):
60 dtypes[d] = cast(np.ndarray, element).dtype
61 else:
62 dtypes[d] = np.dtype(type(element))
63 return dtypes
64
65
66def get_combined_dtype(*data: np.ndarray | Image | ScalarLike) -> DTypeLike:
67 """Get the combined dtype for a collection of arrays to prevent loss
68 of precision.
69
70 Parameters
71 ----------
72 data:
73 The arrays to use for calculating the dtype
74
75 Returns
76 -------
77 result: np.dtype
78 The resulting dtype.
79 """
80 dtypes = get_dtypes(*data)
81 return max(dtypes) # type: ignore
82
83
84class Image:
85 """A numpy array with an origin and (optional) bands
86
87 This class contains a 2D numpy array with the addition of an
88 origin (``yx0``) and an optional first index (``bands``) that
89 allows an immutable named index to be used.
90
91 Notes
92 -----
93 One of the main limitations of using numpy arrays to store image data
94 is the lack of an ``origin`` attribute that allows an array to retain
95 knowledge of it's location in a larger scene.
96 For example, if a numpy array ``x`` is sliced, eg. ``x[10:20, 30:40]``
97 the result will be a new ``10x10`` numpy array that has no meta
98 data to inform the user that it was sliced from a larger image.
99 In addition, astrophysical images are also multi-band data cubes,
100 with a 2D image in each band (in fact this is the simplifying
101 assumption that distinguishes scarlet lite from scarlet main).
102 However, the ordering of the bands during processing might differ from
103 the ordering of the bands to display multiband data.
104 So a mechanism was also desired to simplify the sorting and index of
105 an image by band name.
106
107 Thus, scarlet lite creates a numpy-array like class with the additional
108 ``bands`` and ``yx0`` attributes to keep track of the bands contained
109 in an array and the origin of that array (we specify ``yx0`` as opposed
110 to ``xy0`` to be consistent with the default numpy/C++ ``(y, x)``
111 ordering of arrays as opposed to the traditional cartesian ``(x, y)``
112 ordering used in astronomy and other modules in the science pipelines.
113 While this may be a small source of confusion for the user,
114 it is consistent with the ordering in the original scarlet package and
115 ensures the consistency of scarlet lite images and python index slicing.
116
117 Examples
118 --------
119
120 The easiest way to create a new image is to use ``Image(numpy_array)``,
121 for example
122
123 >>> import numpy as np
124 >>> from lsst.scarlet.lite import Image
125 >>>
126 >>> x = np.arange(12).reshape(3, 4)
127 >>> image = Image(x)
128 >>> print(image)
129 Image:
130 [[ 0 1 2 3]
131 [ 4 5 6 7]
132 [ 8 9 10 11]]
133 bands=()
134 bbox=Box(shape=(3, 4), origin=(0, 0))
135
136 This will create a single band :py:class:`~lsst.scarlet.lite.Image` with
137 origin ``(0, 0)``.
138 To create a multi-band image the input array must have 3 dimensions and
139 the ``bands`` property must be specified:
140
141 >>> x = np.arange(24).reshape(2, 3, 4)
142 >>> image = Image(x, bands=("i", "z"))
143 >>> print(image)
144 Image:
145 [[[ 0 1 2 3]
146 [ 4 5 6 7]
147 [ 8 9 10 11]]
148 <BLANKLINE>
149 [[12 13 14 15]
150 [16 17 18 19]
151 [20 21 22 23]]]
152 bands=('i', 'z')
153 bbox=Box(shape=(3, 4), origin=(0, 0))
154
155 It is also possible to create an empty single-band image using the
156 ``from_box`` static method:
157
158 >>> from lsst.scarlet.lite import Box
159 >>> image = Image.from_box(Box((3, 4), (100, 120)))
160 >>> print(image)
161 Image:
162 [[0. 0. 0. 0.]
163 [0. 0. 0. 0.]
164 [0. 0. 0. 0.]]
165 bands=()
166 bbox=Box(shape=(3, 4), origin=(100, 120))
167
168 Similarly, an empty multi-band image can be created by passing a tuple
169 of ``bands``:
170
171 >>> image = Image.from_box(Box((3, 4)), bands=("r", "i"))
172 >>> print(image)
173 Image:
174 [[[0. 0. 0. 0.]
175 [0. 0. 0. 0.]
176 [0. 0. 0. 0.]]
177 <BLANKLINE>
178 [[0. 0. 0. 0.]
179 [0. 0. 0. 0.]
180 [0. 0. 0. 0.]]]
181 bands=('r', 'i')
182 bbox=Box(shape=(3, 4), origin=(0, 0))
183
184 To select a sub-image use a ``Box`` to select a spatial region in either a
185 single-band or multi-band image:
186
187 >>> x = np.arange(60).reshape(3, 4, 5)
188 >>> image = Image(x, bands=("g", "r", "i"), yx0=(20, 30))
189 >>> bbox = Box((2, 2), (21, 32))
190 >>> print(image[bbox])
191 Image:
192 [[[ 7 8]
193 [12 13]]
194 <BLANKLINE>
195 [[27 28]
196 [32 33]]
197 <BLANKLINE>
198 [[47 48]
199 [52 53]]]
200 bands=('g', 'r', 'i')
201 bbox=Box(shape=(2, 2), origin=(21, 32))
202
203
204 To select a single-band image from a multi-band image,
205 pass the name of the band as an index:
206
207 >>> print(image["r"])
208 Image:
209 [[20 21 22 23 24]
210 [25 26 27 28 29]
211 [30 31 32 33 34]
212 [35 36 37 38 39]]
213 bands=()
214 bbox=Box(shape=(4, 5), origin=(20, 30))
215
216 Multi-band images can also be sliced in the spatial dimension, for example
217
218 >>> print(image["g":"r"])
219 Image:
220 [[[ 0 1 2 3 4]
221 [ 5 6 7 8 9]
222 [10 11 12 13 14]
223 [15 16 17 18 19]]
224 <BLANKLINE>
225 [[20 21 22 23 24]
226 [25 26 27 28 29]
227 [30 31 32 33 34]
228 [35 36 37 38 39]]]
229 bands=('g', 'r')
230 bbox=Box(shape=(4, 5), origin=(20, 30))
231
232 and
233
234 >>> print(image["r":"r"])
235 Image:
236 [[[20 21 22 23 24]
237 [25 26 27 28 29]
238 [30 31 32 33 34]
239 [35 36 37 38 39]]]
240 bands=('r',)
241 bbox=Box(shape=(4, 5), origin=(20, 30))
242
243 both extract a slice of a multi-band image.
244
245 .. warning::
246 Unlike numerical indices, where ``slice(x, y)`` will select the
247 subset of an array from ``x`` to ``y-1`` (excluding ``y``),
248 a spectral slice of an ``Image`` will return the image slice
249 including band ``y``.
250
251 It is also possible to change the order or index a subset of bands
252 in an image. For example:
253
254 >>> print(image[("r", "g", "i")])
255 Image:
256 [[[20 21 22 23 24]
257 [25 26 27 28 29]
258 [30 31 32 33 34]
259 [35 36 37 38 39]]
260 <BLANKLINE>
261 [[ 0 1 2 3 4]
262 [ 5 6 7 8 9]
263 [10 11 12 13 14]
264 [15 16 17 18 19]]
265 <BLANKLINE>
266 [[40 41 42 43 44]
267 [45 46 47 48 49]
268 [50 51 52 53 54]
269 [55 56 57 58 59]]]
270 bands=('r', 'g', 'i')
271 bbox=Box(shape=(4, 5), origin=(20, 30))
272
273
274 will return a new image with the bands re-ordered.
275
276 Images can be combined using the standard arithmetic operations similar to
277 numpy arrays, including ``+, -, *, /, **`` etc, however, if two images are
278 combined with different bounding boxes, the _union_ of the two
279 boxes is used for the result. For example:
280
281 >>> image1 = Image(np.ones((2, 3, 4)), bands=tuple("gr"))
282 >>> image2 = Image(np.ones((2, 3, 4)), bands=tuple("gr"), yx0=(2, 3))
283 >>> result = image1 + image2
284 >>> print(result)
285 Image:
286 [[[1. 1. 1. 1. 0. 0. 0.]
287 [1. 1. 1. 1. 0. 0. 0.]
288 [1. 1. 1. 2. 1. 1. 1.]
289 [0. 0. 0. 1. 1. 1. 1.]
290 [0. 0. 0. 1. 1. 1. 1.]]
291 <BLANKLINE>
292 [[1. 1. 1. 1. 0. 0. 0.]
293 [1. 1. 1. 1. 0. 0. 0.]
294 [1. 1. 1. 2. 1. 1. 1.]
295 [0. 0. 0. 1. 1. 1. 1.]
296 [0. 0. 0. 1. 1. 1. 1.]]]
297 bands=('g', 'r')
298 bbox=Box(shape=(5, 7), origin=(0, 0))
299
300 If instead you want to additively ``insert`` image 1 into image 2,
301 so that they have the same bounding box as image 2, use
302
303 >>> _ = image2.insert(image1)
304 >>> print(image2)
305 Image:
306 [[[2. 1. 1. 1.]
307 [1. 1. 1. 1.]
308 [1. 1. 1. 1.]]
309 <BLANKLINE>
310 [[2. 1. 1. 1.]
311 [1. 1. 1. 1.]
312 [1. 1. 1. 1.]]]
313 bands=('g', 'r')
314 bbox=Box(shape=(3, 4), origin=(2, 3))
315
316 To insert an image using a different operation use
317
318 >>> from operator import truediv
319 >>> _ = image2.insert(image1, truediv)
320 >>> print(image2)
321 Image:
322 [[[2. 1. 1. 1.]
323 [1. 1. 1. 1.]
324 [1. 1. 1. 1.]]
325 <BLANKLINE>
326 [[2. 1. 1. 1.]
327 [1. 1. 1. 1.]
328 [1. 1. 1. 1.]]]
329 bands=('g', 'r')
330 bbox=Box(shape=(3, 4), origin=(2, 3))
331
332
333 However, depending on the operation you may get unexpected results
334 since now there could be ``NaN`` and ``inf`` values due to the zeros
335 in the non-overlapping regions.
336 Instead, to select only the overlap region one can use
337
338 >>> result = image1 / image2
339 >>> print(result[image1.bbox & image2.bbox])
340 Image:
341 [[[0.5]]
342 <BLANKLINE>
343 [[0.5]]]
344 bands=('g', 'r')
345 bbox=Box(shape=(1, 1), origin=(2, 3))
346
347
348 Parameters
349 ----------
350 data:
351 The array data for the image.
352 bands:
353 The bands coving the image.
354 yx0:
355 The (y, x) offset for the lower left of the image.
356 """
357
359 self,
360 data: np.ndarray,
361 bands: Sequence | None = None,
362 yx0: tuple[int, int] | None = None,
363 ):
364 if bands is None or len(bands) == 0:
365 # Using an empty tuple for the bands will result in a 2D image
366 bands = ()
367 assert len(data.shape) == 2
368 else:
369 bands = tuple(bands)
370 assert len(data.shape) == 3
371 if data.shape[0] != len(bands):
372 raise ValueError(f"Array has spectral size {data.shape[0]}, but {bands} bands")
373 if yx0 is None:
374 yx0 = (0, 0)
375 self._data = data
376 self._yx0 = yx0
377 self._bands = bands
378
379 @staticmethod
380 def from_box(bbox: Box, bands: tuple | None = None, dtype: DTypeLike = float) -> Image:
381 """Initialize an empty image from a bounding Box and optional bands
382
383 Parameters
384 ----------
385 bbox:
386 The bounding box that contains the image.
387 bands:
388 The bands for the image.
389 If bands is `None` then a 2D image is created.
390 dtype:
391 The numpy dtype of the image.
392
393 Returns
394 -------
395 image:
396 An empty image contained in ``bbox`` with ``bands`` bands.
397 """
398 if bands is not None and len(bands) > 0:
399 shape = (len(bands),) + bbox.shape
400 else:
401 shape = bbox.shape
402 data = np.zeros(shape, dtype=dtype)
403 return Image(data, bands=bands, yx0=cast(tuple[int, int], bbox.origin))
404
405 @property
406 def shape(self) -> tuple[int, ...]:
407 """The shape of the image.
408
409 This includes the spectral dimension, if there is one.
410 """
411 return self._data.shape
412
413 @property
414 def dtype(self) -> DTypeLike:
415 """The numpy dtype of the image."""
416 return self._data.dtype
417
418 @property
419 def bands(self) -> tuple:
420 """The bands used in the image."""
421 return self._bands
422
423 @property
424 def n_bands(self) -> int:
425 """Number of bands in the image.
426
427 If `n_bands == 0` then the image is 2D and does not have a spectral
428 dimension.
429 """
430 return len(self._bands)
431
432 @property
433 def is_multiband(self) -> bool:
434 """Whether or not the image has a spectral dimension."""
435 return self.n_bandsn_bands > 0
436
437 @property
438 def height(self) -> int:
439 """Height of the image."""
440 return self.shape[-2]
441
442 @property
443 def width(self) -> int:
444 """Width of the image."""
445 return self.shape[-1]
446
447 @property
448 def yx0(self) -> tuple[int, int]:
449 """Origin of the image, in numpy/C++ y,x ordering."""
450 return self._yx0
451
452 @property
453 def y0(self) -> int:
454 """location of the y-offset."""
455 return self._yx0[0]
456
457 @property
458 def x0(self) -> int:
459 """Location of the x-offset."""
460 return self._yx0[1]
461
462 @property
463 def bbox(self) -> Box:
464 """Bounding box for the special dimensions in the image."""
465 return Box(self.shape[-2:], self._yx0)
466
467 @property
468 def data(self) -> np.ndarray:
469 """The image viewed as a numpy array."""
470 return self._data
471
472 def spectral_indices(self, bands: Sequence | slice) -> tuple[int, ...] | slice:
473 """The indices to extract each band in `bands` in order from the image
474
475 This converts a band name, or list of band names,
476 into numerical indices that can be used to slice the internal numpy
477 `data` array.
478
479 Parameters
480 ---------
481 bands:
482 If `bands` is a list of band names, then the result will be an
483 index corresponding to each band, in order.
484 If `bands` is a slice, then the ``start`` and ``stop`` properties
485 should be band names, and the result will be a slice with the
486 appropriate indices to start at `bands.start` and end at
487 `bands.stop`.
488
489 Returns
490 -------
491 band_indices:
492 Tuple of indices for each band in this image.
493 """
494 if isinstance(bands, slice):
495 # Convert a slice of band names into a slice of array indices
496 # to select the appropriate slice.
497 if bands.start is None:
498 start = None
499 else:
500 start = self.bandsbands.index(bands.start)
501 if bands.stop is None:
502 stop = None
503 else:
504 stop = self.bandsbands.index(bands.stop) + 1
505 return slice(start, stop, bands.step)
506
507 if isinstance(bands, str):
508 return (self.bandsbands.index(bands),)
509
510 band_indices = tuple(self.bandsbands.index(band) for band in bands if band in self.bandsbands)
511 return band_indices
512
514 self,
515 other: Image,
516 ) -> tuple[tuple[int, ...] | slice, tuple[int, ...] | slice]:
517 """Match bands between two images
518
519 Parameters
520 ----------
521 other:
522 The other image to match spectral indices to.
523
524 Returns
525 -------
526 result:
527 A tuple with a tuple of indices/slices for each dimension,
528 including the spectral dimension.
529 """
530 if self.bandsbands == other.bands and self.n_bandsn_bands != 0:
531 # The bands match
532 return slice(None), slice(None)
533 if self.n_bandsn_bands == 0 and other.n_bands == 0:
534 # The images are 2D, so no spectral slicing is necessary
535 return (), ()
536 if self.n_bandsn_bands == 0 and other.n_bands > 1:
537 err = "Attempted to insert a monochromatic image into a mutli-band image"
538 raise ValueError(err)
539 if other.n_bands == 0:
540 err = "Attempted to insert a multi-band image into a monochromatic image"
541 raise ValueError(err)
542
543 self_indices = cast(tuple[int, ...], self.spectral_indices(other.bands))
544 matched_bands = tuple(self.bandsbands[bidx] for bidx in self_indices)
545 other_indices = cast(tuple[int, ...], other.spectral_indices(matched_bands))
546 return other_indices, self_indices
547
548 def matched_slices(self, bbox: Box) -> tuple[tuple[slice, ...], tuple[slice, ...]]:
549 """Get the slices to match this image to a given bounding box
550
551 Parameters
552 ----------
553 bbox:
554 The bounding box to match this image to.
555
556 Returns
557 -------
558 result:
559 Tuple of indices/slices to match this image to the given bbox.
560 """
561 if self.bboxbbox == bbox:
562 # No need to slice, since the boxes match
563 _slice = (slice(None),) * bbox.ndim
564 return _slice, _slice
565
566 slices = self.bboxbbox.overlapped_slices(bbox)
567 return slices
568
570 self,
571 bands: object | tuple[object] | None = None,
572 bbox: Box | None = None,
573 ) -> Image:
574 """Project this image into a different set of bands
575
576 Parameters
577 ----------
578 bands:
579 Spectral bands to project this image into.
580 Not all bands have to be contained in the image, and not all
581 bands contained in the image have to be used in the projection.
582 bbox:
583 A bounding box to project the image into.
584
585 Results
586 -------
587 image:
588 A new image creating by projecting this image into
589 `bbox` and `bands`.
590 """
591 if bands is None:
592 bands = self.bandsbands
593 if not isinstance(bands, tuple):
594 bands = (bands,)
595 if self.is_multiband:
596 indices = self.spectral_indices(bands)
597 data = self.data[indices, :]
598 else:
599 data = self.data
600
601 if bbox is None:
602 return Image(data, bands=bands, yx0=self.yx0)
603
604 if self.is_multiband:
605 image = np.zeros((len(bands),) + bbox.shape, dtype=data.dtype)
606 slices = bbox.overlapped_slices(self.bboxbbox)
607 # Insert a slice for the spectral dimension
608 image[(slice(None),) + slices[0]] = data[(slice(None),) + slices[1]]
609 return Image(image, bands=bands, yx0=cast(tuple[int, int], bbox.origin))
610
611 image = np.zeros(bbox.shape, dtype=data.dtype)
612 slices = bbox.overlapped_slices(self.bboxbbox)
613 image[slices[0]] = data[slices[1]]
614 return Image(image, bands=bands, yx0=cast(tuple[int, int], bbox.origin))
615
616 @property
617 def multiband_slices(self) -> tuple[tuple[int, ...] | slice, slice, slice]:
618 """Return the slices required to slice a multiband image"""
619 return (self.spectral_indices(self.bandsbands),) + self.bboxbbox.slices # type: ignore
620
622 self,
623 image: Image,
624 op: Callable = operator.add,
625 ) -> Image:
626 """Insert this image into another image in place.
627
628 Parameters
629 ----------
630 image:
631 The image to insert this image into.
632 op:
633 The operator to use when combining the images.
634
635 Returns
636 -------
637 result:
638 `image` updated by inserting this instance.
639 """
640 return insert_image(image, self, op)
641
642 def insert(self, image: Image, op: Callable = operator.add) -> Image:
643 """Insert another image into this image in place.
644
645 Parameters
646 ----------
647 image:
648 The image to insert this image into.
649 op:
650 The operator to use when combining the images.
651
652 Returns
653 -------
654 result:
655 This instance with `image` inserted.
656 """
657 return insert_image(self, image, op)
658
659 def repeat(self, bands: tuple) -> Image:
660 """Project a 2D image into the spectral dimension
661
662 Parameters
663 ----------
664 bands:
665 The bands in the projected image.
666
667 Returns
668 -------
669 result: Image
670 The 2D image repeated in each band in the spectral dimension.
671 """
672 if self.is_multiband:
673 raise ValueError("Image.repeat only works with 2D images")
674 return self.copy_with(
675 np.repeat(self.data[None, :, :], len(bands), axis=0),
676 bands=bands,
677 yx0=self.yx0,
678 )
679
680 def copy(self, order=None) -> Image:
681 """Make a copy of this image.
682
683 Parameters
684 ----------
685 order:
686 The ordering to use for storing the bytes.
687 This is unlikely to be needed, and just defaults to
688 the numpy behavior (C) ordering.
689
690 Returns
691 -------
692 image: Image
693 The copy of this image.
694 """
695 return self.copy_with(order=order)
696
698 self,
699 data: np.ndarray | None = None,
700 order: str | None = None,
701 bands: tuple[str, ...] | None = None,
702 yx0: tuple[int, int] | None = None,
703 ):
704 """Copy of this image with some parameters updated.
705
706 Any parameters not specified by the user will be copied from the
707 current image.
708
709 Parameters
710 ----------
711 data:
712 An update for the data in the image.
713 order:
714 The ordering for stored bytes, from numpy.copy.
715 bands:
716 The bands that the resulting image will have.
717 The number of bands must be the same as the first dimension
718 in the data array.
719 yx0:
720 The lower-left of the image bounding box.
721
722 Returns
723 -------
724 image: Image
725 The copied image.
726 """
727 if order is None:
728 order = "C"
729 if data is None:
730 data = self.data.copy(order) # type: ignore
731 if bands is None:
732 bands = self.bandsbands
733 if yx0 is None:
734 yx0 = self.yx0
735 return Image(data, bands, yx0)
736
737 def _i_update(self, op: Callable, other: Image | ScalarLike) -> Image:
738 """Update the data array in place.
739
740 This is typically implemented by `__i<op>__` methods,
741 like `__iadd__`, to apply an operator and update this image
742 with the data in place.
743
744 Parameters
745 ----------
746 op:
747 Operator used to combine this image with the `other` image.
748 other:
749 The other image that is combined with this one using the operator
750 `op`.
751
752 Returns
753 -------
754 image: Image
755 This image, after being updated by the operator
756 """
757 dtype = get_combined_dtype(self.data, other)
758 if self.dtype != dtype:
759 if hasattr(other, "dtype"):
760 _dtype = cast(np.ndarray, other).dtype
761 else:
762 _dtype = type(other)
763 msg = f"Cannot update an array with type {self.dtype} with {_dtype}"
764 raise ValueError(msg)
765 result = op(other)
766 self._data[:] = result.data
767 self._bands = result.bands
768 self._yx0 = result.yx0
769 return self
770
771 def _check_equality(self, other: Image | ScalarLike, op: Callable) -> Image:
772 """Compare this array to another.
773
774 This performs an element by element equality check.
775
776 Parameters
777 ----------
778 other:
779 The image to compare this image to.
780 op:
781 The operator used for the comparision (==, !=, >=, <=).
782
783 Returns
784 -------
785 image: Image
786 An image made by checking all of the elements in this array with
787 another.
788
789 Raises
790 ------
791 TypeError:
792 If `other` is not an `Image`.
793 MismatchedBandsError:
794 If `other` has different bands.
795 MismatchedBoxError:
796 if `other` exists in a different bounding box.
797 """
798 if isinstance(other, Image) and other.bands == self.bandsbands and other.bbox == self.bboxbbox:
799 return self.copy_with(data=op(self.data, other.data))
800
801 if not isinstance(other, Image):
802 if type(other) in ScalarTypes:
803 return self.copy_with(data=op(self.data, other))
804 raise TypeError(f"Cannot compare images to {type(other)}")
805
806 if other.bands != self.bandsbands:
807 msg = f"Cannot compare images with mismatched bands: {self.bands} vs {other.bands}"
808 raise MismatchedBandsError(msg)
809
810 raise MismatchedBoxError(
811 f"Cannot compare images with different bounds boxes: {self.bbox} vs. {other.bbox}"
812 )
813
814 def __eq__(self, other: object) -> Image: # type: ignore
815 """Check if this image is equal to another."""
816 if not isinstance(other, Image) and not isinstance(other, ScalarTypes):
817 raise TypeError(f"Cannot compare an Image to {type(other)}.")
818 return self._check_equality(other, operator.eq) # type: ignore
819
820 def __ne__(self, other: object) -> Image: # type: ignore
821 """Check if this image is not equal to another."""
822 return ~self.__eq__(other)
823
824 def __ge__(self, other: Image | ScalarLike) -> Image:
825 """Check if this image is greater than or equal to another."""
826 if type(other) in ScalarTypes:
827 return self.copy_with(data=self.data >= other)
828 return self._check_equality(other, operator.ge)
829
830 def __le__(self, other: Image | ScalarLike) -> Image:
831 """Check if this image is less than or equal to another."""
832 if type(other) in ScalarTypes:
833 return self.copy_with(data=self.data <= other)
834 return self._check_equality(other, operator.le)
835
836 def __gt__(self, other: Image | ScalarLike) -> Image:
837 """Check if this image is greater than or equal to another."""
838 if type(other) in ScalarTypes:
839 return self.copy_with(data=self.data > other)
840 return self._check_equality(other, operator.ge)
841
842 def __lt__(self, other: Image | ScalarLike) -> Image:
843 """Check if this image is less than or equal to another."""
844 if type(other) in ScalarTypes:
845 return self.copy_with(data=self.data < other)
846 return self._check_equality(other, operator.le)
847
848 def __neg__(self):
849 """Take the negative of the image."""
850 return self.copy_with(data=-self._data)
851
852 def __pos__(self):
853 """Make a copy using of the image."""
854 return self.copy()
855
856 def __invert__(self):
857 """Take the inverse (~) of the image."""
858 return self.copy_with(data=~self._data)
859
860 def __add__(self, other: Image | ScalarLike) -> Image:
861 """Combine this image and another image using addition."""
862 return _operate_on_images(self, other, operator.add)
863
864 def __iadd__(self, other: Image | ScalarLike) -> Image:
865 """Combine this image and another image using addition and update
866 in place.
867 """
868 return self._i_update(self.__add____add__, other)
869
870 def __radd__(self, other: Image | ScalarLike) -> Image:
871 """Combine this image and another image using addition,
872 with this image on the right.
873 """
874 if type(other) in ScalarTypes:
875 return self.copy_with(data=other + self.data)
876 return cast(Image, other).__add__(self)
877
878 def __sub__(self, other: Image | ScalarLike) -> Image:
879 """Combine this image and another image using subtraction."""
880 return _operate_on_images(self, other, operator.sub)
881
882 def __isub__(self, other: Image | ScalarLike) -> Image:
883 """Combine this image and another image using subtraction,
884 with this image on the right.
885 """
886 return self._i_update(self.__sub____sub__, other)
887
888 def __rsub__(self, other: Image | ScalarLike) -> Image:
889 """Combine this image and another image using subtraction,
890 with this image on the right.
891 """
892 if type(other) in ScalarTypes:
893 return self.copy_with(data=other - self.data)
894 return cast(Image, other).__sub__(self)
895
896 def __mul__(self, other: Image | ScalarLike) -> Image:
897 """Combine this image and another image using multiplication."""
898 return _operate_on_images(self, other, operator.mul)
899
900 def __imul__(self, other: Image | ScalarLike) -> Image:
901 """Combine this image and another image using multiplication,
902 with this image on the right.
903 """
904 return self._i_update(self.__mul____mul__, other)
905
906 def __rmul__(self, other: Image | ScalarLike) -> Image:
907 """Combine this image and another image using multiplication,
908 with this image on the right.
909 """
910 if type(other) in ScalarTypes:
911 return self.copy_with(data=other * self.data)
912 return cast(Image, other).__mul__(self)
913
914 def __truediv__(self, other: Image | ScalarLike) -> Image:
915 """Divide this image by `other`."""
916 return _operate_on_images(self, other, operator.truediv)
917
918 def __itruediv__(self, other: Image | ScalarLike) -> Image:
919 """Divide this image by `other` in place."""
920 return self._i_update(self.__truediv____truediv__, other)
921
922 def __rtruediv__(self, other: Image | ScalarLike) -> Image:
923 """Divide this image by `other` with this on the right."""
924 if type(other) in ScalarTypes:
925 return self.copy_with(data=other / self.data)
926 return cast(Image, other).__truediv__(self)
927
928 def __floordiv__(self, other: Image | ScalarLike) -> Image:
929 """Floor divide this image by `other` in place."""
930 return _operate_on_images(self, other, operator.floordiv)
931
932 def __ifloordiv__(self, other: Image | ScalarLike) -> Image:
933 """Floor divide this image by `other` in place."""
934 return self._i_update(self.__floordiv____floordiv__, other)
935
936 def __rfloordiv__(self, other: Image | ScalarLike) -> Image:
937 """Floor divide this image by `other` with this on the right."""
938 if type(other) in ScalarTypes:
939 return self.copy_with(data=other // self.data)
940 return cast(Image, other).__floordiv__(self)
941
942 def __pow__(self, other: Image | ScalarLike) -> Image:
943 """Raise this image to the `other` power."""
944 return _operate_on_images(self, other, operator.pow)
945
946 def __ipow__(self, other: Image | ScalarLike) -> Image:
947 """Raise this image to the `other` power in place."""
948 return self._i_update(self.__pow____pow__, other)
949
950 def __rpow__(self, other: Image | ScalarLike) -> Image:
951 """Raise this other to the power of this image."""
952 if type(other) in ScalarTypes:
953 return self.copy_with(data=other**self.data)
954 return cast(Image, other).__pow__(self)
955
956 def __mod__(self, other: Image | ScalarLike) -> Image:
957 """Take the modulus of this % other."""
958 return _operate_on_images(self, other, operator.mod)
959
960 def __imod__(self, other: Image | ScalarLike) -> Image:
961 """Take the modulus of this % other in place."""
962 return self._i_update(self.__mod____mod__, other)
963
964 def __rmod__(self, other: Image | ScalarLike) -> Image:
965 """Take the modulus of other % this."""
966 if type(other) in ScalarTypes:
967 return self.copy_with(data=other % self.data)
968 return cast(Image, other).__mod__(self)
969
970 def __and__(self, other: Image | ScalarLike) -> Image:
971 """Take the bitwise and of this and other."""
972 return _operate_on_images(self, other, operator.and_)
973
974 def __iand__(self, other: Image | ScalarLike) -> Image:
975 """Take the bitwise and of this and other in place."""
976 return self._i_update(self.__and____and__, other)
977
978 def __rand__(self, other: Image | ScalarLike) -> Image:
979 """Take the bitwise and of other and this."""
980 if type(other) in ScalarTypes:
981 return self.copy_with(data=other & self.data)
982 return cast(Image, other).__and__(self)
983
984 def __or__(self, other: Image | ScalarLike) -> Image:
985 """Take the binary or of this or other."""
986 return _operate_on_images(self, other, operator.or_)
987
988 def __ior__(self, other: Image | ScalarLike) -> Image:
989 """Take the binary or of this or other in place."""
990 return self._i_update(self.__or____or__, other)
991
992 def __ror__(self, other: Image | ScalarLike) -> Image:
993 """Take the binary or of other or this."""
994 if type(other) in ScalarTypes:
995 return self.copy_with(data=other | self.data)
996 return cast(Image, other).__or__(self)
997
998 def __xor__(self, other: Image | ScalarLike) -> Image:
999 """Take the binary xor of this xor other."""
1000 return _operate_on_images(self, other, operator.xor)
1001
1002 def __ixor__(self, other: Image | ScalarLike) -> Image:
1003 """Take the binary xor of this xor other in place."""
1004 return self._i_update(self.__xor____xor__, other)
1005
1006 def __rxor__(self, other: Image | ScalarLike) -> Image:
1007 """Take the binary xor of other xor this."""
1008 if type(other) in ScalarTypes:
1009 return self.copy_with(data=other ^ self.data)
1010 return cast(Image, other).__xor__(self)
1011
1012 def __lshift__(self, other: ScalarLike) -> Image:
1013 """Shift this image to the left by other bits."""
1014 if not issubclass(np.dtype(type(other)).type, np.integer):
1015 raise TypeError("Bit shifting an image can only be done with integers")
1016 return self.copy_with(data=self.data << other)
1017
1018 def __ilshift__(self, other: ScalarLike) -> Image:
1019 """Shift this image to the left by other bits in place."""
1020 self[:] = self.__lshift__(other)
1021 return self
1022
1023 def __rlshift__(self, other: ScalarLike) -> Image:
1024 """Shift other to the left by this image bits."""
1025 return self.copy_with(data=other << self.data)
1026
1027 def __rshift__(self, other: ScalarLike) -> Image:
1028 """Shift this image to the right by other bits."""
1029 if not issubclass(np.dtype(type(other)).type, np.integer):
1030 raise TypeError("Bit shifting an image can only be done with integers")
1031 return self.copy_with(data=self.data >> other)
1032
1033 def __irshift__(self, other: ScalarLike) -> Image:
1034 """Shift this image to the right by other bits in place."""
1035 self[:] = self.__rshift__(other)
1036 return self
1037
1038 def __rrshift__(self, other: ScalarLike) -> Image:
1039 """Shift other to the right by this image bits."""
1040 return self.copy_with(data=other >> self.data)
1041
1042 def __str__(self):
1043 """Display the image array, bands, and bounding box."""
1044 return f"Image:\n {str(self.data)}\n bands={self.bands}\n bbox={self.bbox}"
1045
1046 def _is_spectral_index(self, index: Any) -> bool:
1047 """Check to see if an index is a spectral index.
1048
1049 Parameters
1050 ----------
1051 index:
1052 Either a slice, a tuple, or an element in `Image.bands`.
1053
1054 Returns
1055 -------
1056 result:
1057 ``True`` if `index` is band or tuple of bands.
1058 """
1059 bands = self.bandsbands
1060 if isinstance(index, slice):
1061 if index.start in bands or index.stop in bands or (index.start is None and index.stop is None):
1062 return True
1063 return False
1064 if index in self.bandsbands:
1065 return True
1066 if isinstance(index, tuple) and index[0] in self.bandsbands:
1067 return True
1068 return False
1069
1070 def _get_box_slices(self, bbox: Box) -> tuple[slice, slice]:
1071 """Get the slices of the image to insert it into the overlapping
1072 region with `bbox`."""
1073 overlap = self.bboxbbox & bbox
1074 if overlap != bbox:
1075 raise IndexError("Bounding box is outside of the image")
1076 origin = bbox.origin
1077 shape = bbox.shape
1078 y_start = origin[0] - self.yx0[0]
1079 y_stop = origin[0] + shape[0] - self.yx0[0]
1080 x_start = origin[1] - self.yx0[1]
1081 x_stop = origin[1] + shape[1] - self.yx0[1]
1082 y_index = slice(y_start, y_stop)
1083 x_index = slice(x_start, x_stop)
1084 return y_index, x_index
1085
1086 def _get_sliced(self, indices: Any, value: Image | None = None) -> Image:
1087 """Select a subset of an image
1088
1089 Parameters
1090 ----------
1091 indices:
1092 The indices to select a subsection of the image.
1093 The spectral index can either be a tuple of indices,
1094 a slice of indices, or a single index used to select a
1095 single-band 2D image.
1096 The spatial index (if present) is a `Box`.
1097
1098 value:
1099 The value used to set this slice of the image.
1100 This allows the single `_get_sliced` method to be used for
1101 both getting a slice of an image and setting it.
1102
1103 Returns
1104 -------
1105 result: Image | np.ndarray
1106 The resulting image obtained by selecting subsets of the iamge
1107 based on the `indices`.
1108 """
1109 if not isinstance(indices, tuple):
1110 indices = (indices,)
1111
1112 if self.is_multiband:
1113 if self._is_spectral_index(indices[0]):
1114 if len(indices) > 1 and indices[1] in self.bandsbands:
1115 # The indices are all band names,
1116 # so use them all as a spectral indices
1117 bands = indices
1118 spectral_index = self.spectral_indices(bands)
1119 y_index = x_index = slice(None)
1120 elif self._is_spectral_index(indices[0]):
1121 # The first index is a spectral index
1122 spectral_index = self.spectral_indices(indices[0])
1123 if isinstance(spectral_index, slice):
1124 bands = self.bandsbands[spectral_index]
1125 elif len(spectral_index) == 1:
1126 bands = ()
1127 spectral_index = spectral_index[0] # type: ignore
1128 else:
1129 bands = tuple(self.bandsbands[idx] for idx in spectral_index)
1130 indices = indices[1:]
1131 if len(indices) == 1:
1132 # The spatial index must be a bounding box
1133 if not isinstance(indices[0], Box):
1134 raise IndexError(f"Expected a Box for the spatial index but got {indices[1]}")
1135 y_index, x_index = self._get_box_slices(indices[0])
1136 elif len(indices) == 0:
1137 y_index = x_index = slice(None)
1138 else:
1139 raise IndexError(f"Too many spatial indices, expeected a Box bot got {indices}")
1140 full_index = (spectral_index, y_index, x_index)
1141 elif isinstance(indices[0], Box):
1142 bands = self.bandsbands
1143 y_index, x_index = self._get_box_slices(indices[0])
1144 full_index = (slice(None), y_index, x_index)
1145 else:
1146 error = f"3D images can only be indexed by spectral indices or bounding boxes, got {indices}"
1147 raise IndexError(error)
1148 else:
1149 if len(indices) != 1 or not isinstance(indices[0], Box):
1150 raise IndexError(f"2D images can only be sliced by bounding box, got {indices}")
1151 bands = ()
1152 y_index, x_index = self._get_box_slices(indices[0])
1153 full_index = (y_index, x_index) # type: ignore
1154
1155 y0 = y_index.start
1156 if y0 is None:
1157 y0 = 0
1158
1159 x0 = x_index.start
1160 if x0 is None:
1161 x0 = 0
1162
1163 if value is None:
1164 # This is a getter,
1165 # so return an image with the data sliced properly
1166 yx0 = (y0 + self.yx0[0], x0 + self.yx0[1])
1167
1168 data = self.data[full_index]
1169
1170 if len(data.shape) == 2:
1171 # Only a single band was selected, so return that band
1172 return Image(data, yx0=yx0)
1173 return Image(data, bands=bands, yx0=yx0)
1174
1175 # Set the data
1176 self._data[full_index] = value.data
1177 return self
1178
1179 def overlapped_slices(self, bbox: Box) -> tuple[tuple[slice, ...], tuple[slice, ...]]:
1180 """Get the slices needed to insert this image into a bounding box.
1181
1182 Parameters
1183 ----------
1184 bbox:
1185 The region to insert this image into.
1186
1187 Returns
1188 -------
1189 overlap:
1190 The slice of this image and the slice of the `bbox` required to
1191 insert the overlapping portion of this image.
1192
1193 """
1194 overlap = self.bboxbbox.overlapped_slices(bbox)
1195 if self.is_multiband:
1196 overlap = (slice(None),) + overlap[0], (slice(None),) + overlap[1]
1197 return overlap
1198
1199 def __getitem__(self, indices: Any) -> Image:
1200 """Get the subset of an image
1201
1202 Parameters
1203 ----------
1204 indices:
1205 The indices to select a subsection of the image.
1206
1207 Returns
1208 -------
1209 result:
1210 The resulting image obtained by selecting subsets of the iamge
1211 based on the `indices`.
1212 """
1213 return self._get_sliced(indices)
1214
1215 def __setitem__(self, indices, value: Image) -> Image:
1216 """Set a subset of an image to a given value
1217
1218 Parameters
1219 ----------
1220 indices:
1221 The indices to select a subsection of the image.
1222 value:
1223 The value to use for the subset of the image.
1224
1225 Returns
1226 -------
1227 result:
1228 The resulting image obtained by selecting subsets of the image
1229 based on the `indices`.
1230 """
1231 return self._get_sliced(indices, value)
1232
1233
1234def _operate_on_images(image1: Image, image2: Image | ScalarLike, op: Callable) -> Image:
1235 """Perform an operation on two images, that may or may not be spectrally
1236 and spatially aligned.
1237
1238 Parameters
1239 ----------
1240 image1:
1241 The image on the LHS of the operation
1242 image2:
1243 The image on the RHS of the operation
1244 op:
1245 The operation used to combine the images.
1246
1247 Returns
1248 -------
1249 image:
1250 The resulting combined image.
1251 """
1252 if type(image2) in ScalarTypes:
1253 return image1.copy_with(data=op(image1.data, image2))
1254 image2 = cast(Image, image2)
1255 if image1.bands == image2.bands and image1.bbox == image2.bbox:
1256 # The images perfectly overlap, so just combine their results
1257 with np.errstate(divide="ignore", invalid="ignore"):
1258 result = op(image1.data, image2.data)
1259 return Image(result, bands=image1.bands, yx0=image1.yx0)
1260
1261 if op != operator.add and op != operator.sub and image1.bands != image2.bands:
1262 msg = "Images with different bands can only be combined using addition and subtraction, "
1263 msg += f"got {op}, with bands {image1.bands}, {image2.bands}"
1264 raise ValueError(msg)
1265
1266 # Use all of the bands in the first image
1267 bands = image1.bands
1268 # Add on any bands from the second image not contained in the first image
1269 bands = bands + tuple(band for band in image2.bands if band not in bands)
1270 # Create a box that contains both images
1271 bbox = image1.bbox | image2.bbox
1272 # Create an image that will contain both images
1273 if len(bands) > 0:
1274 shape = (len(bands),) + bbox.shape
1275 else:
1276 shape = bbox.shape
1277
1278 if op == operator.add or op == operator.sub:
1279 dtype = get_combined_dtype(image1, image2)
1280 result = Image(np.zeros(shape, dtype=dtype), bands=bands, yx0=cast(tuple[int, int], bbox.origin))
1281 # Add the first image in place
1282 image1.insert_into(result, operator.add)
1283 # Use the operator to insert the second image
1284 image2.insert_into(result, op)
1285 else:
1286 # Project both images into the full bbox
1287 image1 = image1.project(bbox=bbox)
1288 image2 = image2.project(bbox=bbox)
1289 result = op(image1, image2)
1290 return result
1291
1292
1294 main_image: Image,
1295 sub_image: Image,
1296 op: Callable = operator.add,
1297) -> Image:
1298 """Insert one image into another image
1299
1300 Parameters
1301 ----------
1302 main_image:
1303 The image that will have `sub_image` insertd.
1304 sub_image:
1305 The image that is inserted into `main_image`.
1306 op:
1307 The operator to use for insertion
1308 (addition, subtraction, multiplication, etc.).
1309
1310 Returns
1311 -------
1312 main_image: Image
1313 The `main_image`, with the `sub_image` inserted in place.
1314 """
1315 if len(main_image.bands) == 0 and len(sub_image.bands) == 0:
1316 slices = sub_image.matched_slices(main_image.bbox)
1317 image_slices = slices[1]
1318 self_slices = slices[0]
1319 else:
1320 band_indices = sub_image.matched_spectral_indices(main_image)
1321 slices = sub_image.matched_slices(main_image.bbox)
1322 image_slices = (band_indices[0],) + slices[1] # type: ignore
1323 self_slices = (band_indices[1],) + slices[0] # type: ignore
1324
1325 main_image._data[image_slices] = op(main_image.data[image_slices], sub_image.data[self_slices])
1326 return main_image
char * data
Definition BaseRecord.cc:61
int max
copy_with(self, np.ndarray|None data=None, str|None order=None, tuple[str,...]|None bands=None, tuple[int, int]|None yx0=None)
Definition image.py:703
Image __or__(self, Image|ScalarLike other)
Definition image.py:984
Image _i_update(self, Callable op, Image|ScalarLike other)
Definition image.py:737
Image __sub__(self, Image|ScalarLike other)
Definition image.py:878
tuple[tuple[int,...]|slice, slice, slice] multiband_slices(self)
Definition image.py:617
Image __rlshift__(self, ScalarLike other)
Definition image.py:1023
Image __ne__(self, object other)
Definition image.py:820
Image __rand__(self, Image|ScalarLike other)
Definition image.py:978
Image _check_equality(self, Image|ScalarLike other, Callable op)
Definition image.py:771
Image __rtruediv__(self, Image|ScalarLike other)
Definition image.py:922
tuple[int, int] yx0(self)
Definition image.py:448
__init__(self, np.ndarray data, Sequence|None bands=None, tuple[int, int]|None yx0=None)
Definition image.py:363
Image __and__(self, Image|ScalarLike other)
Definition image.py:970
tuple[tuple[int,...]|slice, tuple[int,...]|slice] matched_spectral_indices(self, Image other)
Definition image.py:516
Image __ilshift__(self, ScalarLike other)
Definition image.py:1018
Image __iadd__(self, Image|ScalarLike other)
Definition image.py:864
Image __eq__(self, object other)
Definition image.py:814
Image __rmul__(self, Image|ScalarLike other)
Definition image.py:906
bool _is_spectral_index(self, Any index)
Definition image.py:1046
Image __itruediv__(self, Image|ScalarLike other)
Definition image.py:918
Image copy(self, order=None)
Definition image.py:680
Image __ipow__(self, Image|ScalarLike other)
Definition image.py:946
Image __iand__(self, Image|ScalarLike other)
Definition image.py:974
Image __lt__(self, Image|ScalarLike other)
Definition image.py:842
Image __setitem__(self, indices, Image value)
Definition image.py:1215
Image __imod__(self, Image|ScalarLike other)
Definition image.py:960
tuple[slice, slice] _get_box_slices(self, Box bbox)
Definition image.py:1070
Image __ge__(self, Image|ScalarLike other)
Definition image.py:824
Image __pow__(self, Image|ScalarLike other)
Definition image.py:942
Image __mod__(self, Image|ScalarLike other)
Definition image.py:956
tuple[tuple[slice,...], tuple[slice,...]] overlapped_slices(self, Box bbox)
Definition image.py:1179
Image __gt__(self, Image|ScalarLike other)
Definition image.py:836
tuple[int,...] shape(self)
Definition image.py:406
Image __floordiv__(self, Image|ScalarLike other)
Definition image.py:928
np.ndarray data(self)
Definition image.py:468
Image __rpow__(self, Image|ScalarLike other)
Definition image.py:950
tuple[tuple[slice,...], tuple[slice,...]] matched_slices(self, Box bbox)
Definition image.py:548
Image __rfloordiv__(self, Image|ScalarLike other)
Definition image.py:936
Image __truediv__(self, Image|ScalarLike other)
Definition image.py:914
Image __xor__(self, Image|ScalarLike other)
Definition image.py:998
Image insert(self, Image image, Callable op=operator.add)
Definition image.py:642
Image insert_into(self, Image image, Callable op=operator.add)
Definition image.py:625
Image __imul__(self, Image|ScalarLike other)
Definition image.py:900
Image __rsub__(self, Image|ScalarLike other)
Definition image.py:888
Image __getitem__(self, Any indices)
Definition image.py:1199
DTypeLike dtype(self)
Definition image.py:414
Image __ror__(self, Image|ScalarLike other)
Definition image.py:992
Image __lshift__(self, ScalarLike other)
Definition image.py:1012
Image from_box(Box bbox, tuple|None bands=None, DTypeLike dtype=float)
Definition image.py:380
Image _get_sliced(self, Any indices, Image|None value=None)
Definition image.py:1086
Image __ixor__(self, Image|ScalarLike other)
Definition image.py:1002
tuple[int,...]|slice spectral_indices(self, Sequence|slice bands)
Definition image.py:472
Image __rrshift__(self, ScalarLike other)
Definition image.py:1038
Image project(self, object|tuple[object]|None bands=None, Box|None bbox=None)
Definition image.py:573
Image __rxor__(self, Image|ScalarLike other)
Definition image.py:1006
Image __mul__(self, Image|ScalarLike other)
Definition image.py:896
Image __le__(self, Image|ScalarLike other)
Definition image.py:830
Image __isub__(self, Image|ScalarLike other)
Definition image.py:882
Image __irshift__(self, ScalarLike other)
Definition image.py:1033
Image repeat(self, tuple bands)
Definition image.py:659
Image __rmod__(self, Image|ScalarLike other)
Definition image.py:964
Image __rshift__(self, ScalarLike other)
Definition image.py:1027
Image __add__(self, Image|ScalarLike other)
Definition image.py:860
Image __radd__(self, Image|ScalarLike other)
Definition image.py:870
Image __ifloordiv__(self, Image|ScalarLike other)
Definition image.py:932
Image __ior__(self, Image|ScalarLike other)
Definition image.py:988
Image _operate_on_images(Image image1, Image|ScalarLike image2, Callable op)
Definition image.py:1234
list[DTypeLike] get_dtypes(*np.ndarray|Image|ScalarLike data)
Definition image.py:44
DTypeLike get_combined_dtype(*np.ndarray|Image|ScalarLike data)
Definition image.py:66
Image insert_image(Image main_image, Image sub_image, Callable op=operator.add)
Definition image.py:1297