LSST Applications g0da5cf3356+25b44625d0,g17e5ecfddb+50a5ac4092,g1c76d35bf8+585f0f68a2,g295839609d+8ef6456700,g2e2c1a68ba+cc1f6f037e,g38293774b4+62d12e78cb,g3b44f30a73+2891c76795,g48ccf36440+885b902d19,g4b2f1765b6+0c565e8f25,g5320a0a9f6+bd4bf1dc76,g56364267ca+403c24672b,g56b687f8c9+585f0f68a2,g5c4744a4d9+78cd207961,g5ffd174ac0+bd4bf1dc76,g6075d09f38+3075de592a,g667d525e37+cacede5508,g6f3e93b5a3+da81c812ee,g71f27ac40c+cacede5508,g7212e027e3+eb621d73aa,g774830318a+18d2b9fa6c,g7985c39107+62d12e78cb,g79ca90bc5c+fa2cc03294,g881bdbfe6c+cacede5508,g91fc1fa0cf+82a115f028,g961520b1fb+2534687f64,g96f01af41f+f2060f23b6,g9ca82378b8+cacede5508,g9d27549199+78cd207961,gb065e2a02a+ad48cbcda4,gb1df4690d6+585f0f68a2,gb35d6563ee+62d12e78cb,gbc3249ced9+bd4bf1dc76,gbec6a3398f+bd4bf1dc76,gd01420fc67+bd4bf1dc76,gd59336e7c4+c7bb92e648,gf46e8334de+81c9a61069,gfed783d017+bd4bf1dc76,v25.0.1.rc3
LSST Data Management Base Package
Loading...
Searching...
No Matches
utils.py
Go to the documentation of this file.
1# This file is part of ip_diffim.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22"""Support utilities for Measuring sources"""
23
24# Export DipoleTestImage to expose fake image generating funcs
25__all__ = ["DipoleTestImage", "getPsfFwhm"]
26
27import numpy as np
28
29import lsst.geom as geom
30import lsst.afw.detection as afwDet
31import lsst.afw.display as afwDisplay
32import lsst.afw.geom as afwGeom
33import lsst.afw.image as afwImage
34import lsst.afw.math as afwMath
35import lsst.afw.table as afwTable
36import lsst.meas.algorithms as measAlg
37import lsst.meas.base as measBase
38from lsst.utils.logging import getLogger
39from .dipoleFitTask import DipoleFitAlgorithm
40from . import diffimLib
41from . import diffimTools
42
43afwDisplay.setDefaultMaskTransparency(75)
44keptPlots = False # Have we arranged to keep spatial plots open?
45
46
47def showSourceSet(sSet, xy0=(0, 0), frame=0, ctype=afwDisplay.GREEN, symb="+", size=2):
48 """Draw the (XAstrom, YAstrom) positions of a set of Sources.
49
50 Image has the given XY0.
51 """
52 disp = afwDisplay.afwDisplay(frame=frame)
53 with disp.Buffering():
54 for s in sSet:
55 xc, yc = s.getXAstrom() - xy0[0], s.getYAstrom() - xy0[1]
56
57 if symb == "id":
58 disp.dot(str(s.getId()), xc, yc, ctype=ctype, size=size)
59 else:
60 disp.dot(symb, xc, yc, ctype=ctype, size=size)
61
62
63# Kernel display utilities
64#
65
66
67def showKernelSpatialCells(maskedIm, kernelCellSet, showChi2=False, symb="o",
68 ctype=None, ctypeUnused=None, ctypeBad=None, size=3,
69 frame=None, title="Spatial Cells"):
70 """Show the SpatialCells.
71
72 If symb is something that display.dot understands (e.g. "o"), the top
73 nMaxPerCell candidates will be indicated with that symbol, using ctype
74 and size.
75 """
76 disp = afwDisplay.Display(frame=frame)
77 disp.mtv(maskedIm, title=title)
78 with disp.Buffering():
79 origin = [-maskedIm.getX0(), -maskedIm.getY0()]
80 for cell in kernelCellSet.getCellList():
81 afwDisplay.utils.drawBBox(cell.getBBox(), origin=origin, display=disp)
82
83 goodies = ctypeBad is None
84 for cand in cell.begin(goodies):
85 xc, yc = cand.getXCenter() + origin[0], cand.getYCenter() + origin[1]
86 if cand.getStatus() == afwMath.SpatialCellCandidate.BAD:
87 color = ctypeBad
88 elif cand.getStatus() == afwMath.SpatialCellCandidate.GOOD:
89 color = ctype
90 elif cand.getStatus() == afwMath.SpatialCellCandidate.UNKNOWN:
91 color = ctypeUnused
92 else:
93 continue
94
95 if color:
96 disp.dot(symb, xc, yc, ctype=color, size=size)
97
98 if showChi2:
99 rchi2 = cand.getChi2()
100 if rchi2 > 1e100:
101 rchi2 = np.nan
102 disp.dot("%d %.1f" % (cand.getId(), rchi2),
103 xc - size, yc - size - 4, ctype=color, size=size)
104
105
106def showDiaSources(sources, exposure, isFlagged, isDipole, frame=None):
107 """Display Dia Sources.
108 """
109 #
110 # Show us the ccandidates
111 #
112 # Too many mask planes in diffims
113 disp = afwDisplay.Display(frame=frame)
114 for plane in ("BAD", "CR", "EDGE", "INTERPOlATED", "INTRP", "SAT", "SATURATED"):
115 disp.setMaskPlaneColor(plane, color="ignore")
116
117 mos = afwDisplay.utils.Mosaic()
118 for i in range(len(sources)):
119 source = sources[i]
120 badFlag = isFlagged[i]
121 dipoleFlag = isDipole[i]
122 bbox = source.getFootprint().getBBox()
123 stamp = exposure.Factory(exposure, bbox, True)
124 im = afwDisplay.utils.Mosaic(gutter=1, background=0, mode="x")
125 im.append(stamp.getMaskedImage())
126 lab = "%.1f,%.1f:" % (source.getX(), source.getY())
127 if badFlag:
128 ctype = afwDisplay.RED
129 lab += "BAD"
130 if dipoleFlag:
131 ctype = afwDisplay.YELLOW
132 lab += "DIPOLE"
133 if not badFlag and not dipoleFlag:
134 ctype = afwDisplay.GREEN
135 lab += "OK"
136 mos.append(im.makeMosaic(), lab, ctype)
137 title = "Dia Sources"
138 mosaicImage = mos.makeMosaic(display=disp, title=title)
139 return mosaicImage
140
141
142def showKernelCandidates(kernelCellSet, kernel, background, frame=None, showBadCandidates=True,
143 resids=False, kernels=False):
144 """Display the Kernel candidates.
145
146 If kernel is provided include spatial model and residuals;
147 If chi is True, generate a plot of residuals/sqrt(variance), i.e. chi.
148 """
149 #
150 # Show us the ccandidates
151 #
152 if kernels:
153 mos = afwDisplay.utils.Mosaic(gutter=5, background=0)
154 else:
155 mos = afwDisplay.utils.Mosaic(gutter=5, background=-1)
156 #
157 candidateCenters = []
158 candidateCentersBad = []
159 candidateIndex = 0
160 for cell in kernelCellSet.getCellList():
161 for cand in cell.begin(False): # include bad candidates
162 # Original difference image; if does not exist, skip candidate
163 try:
164 resid = cand.getDifferenceImage(diffimLib.KernelCandidateF.ORIG)
165 except Exception:
166 continue
167
168 rchi2 = cand.getChi2()
169 if rchi2 > 1e100:
170 rchi2 = np.nan
171
172 if not showBadCandidates and cand.isBad():
173 continue
174
175 im_resid = afwDisplay.utils.Mosaic(gutter=1, background=-0.5, mode="x")
176
177 try:
178 im = cand.getScienceMaskedImage()
179 im = im.Factory(im, True)
180 im.setXY0(cand.getScienceMaskedImage().getXY0())
181 except Exception:
182 continue
183 if (not resids and not kernels):
184 im_resid.append(im.Factory(im, True))
185 try:
186 im = cand.getTemplateMaskedImage()
187 im = im.Factory(im, True)
188 im.setXY0(cand.getTemplateMaskedImage().getXY0())
189 except Exception:
190 continue
191 if (not resids and not kernels):
192 im_resid.append(im.Factory(im, True))
193
194 # Difference image with original basis
195 if resids:
196 var = resid.getVariance()
197 var = var.Factory(var, True)
198 np.sqrt(var.getArray(), var.getArray()) # inplace sqrt
199 resid = resid.getImage()
200 resid /= var
201 bbox = kernel.shrinkBBox(resid.getBBox())
202 resid = resid.Factory(resid, bbox, deep=True)
203 elif kernels:
204 kim = cand.getKernelImage(diffimLib.KernelCandidateF.ORIG).convertF()
205 resid = kim.Factory(kim, True)
206 im_resid.append(resid)
207
208 # residuals using spatial model
209 ski = afwImage.ImageD(kernel.getDimensions())
210 kernel.computeImage(ski, False, int(cand.getXCenter()), int(cand.getYCenter()))
211 sk = afwMath.FixedKernel(ski)
212 sbg = 0.0
213 if background:
214 sbg = background(int(cand.getXCenter()), int(cand.getYCenter()))
215 sresid = cand.getDifferenceImage(sk, sbg)
216 resid = sresid
217 if resids:
218 resid = sresid.getImage()
219 resid /= var
220 bbox = kernel.shrinkBBox(resid.getBBox())
221 resid = resid.Factory(resid, bbox, deep=True)
222 elif kernels:
223 kim = ski.convertF()
224 resid = kim.Factory(kim, True)
225 im_resid.append(resid)
226
227 im = im_resid.makeMosaic()
228
229 lab = "%d chi^2 %.1f" % (cand.getId(), rchi2)
230 ctype = afwDisplay.RED if cand.isBad() else afwDisplay.GREEN
231
232 mos.append(im, lab, ctype)
233
234 if False and np.isnan(rchi2):
235 disp = afwDisplay.Display(frame=1)
236 disp.mtv(cand.getScienceMaskedImage.getImage(), title="candidate")
237 print("rating", cand.getCandidateRating())
238
239 im = cand.getScienceMaskedImage()
240 center = (candidateIndex, cand.getXCenter() - im.getX0(), cand.getYCenter() - im.getY0())
241 candidateIndex += 1
242 if cand.isBad():
243 candidateCentersBad.append(center)
244 else:
245 candidateCenters.append(center)
246
247 if resids:
248 title = "chi Diffim"
249 elif kernels:
250 title = "Kernels"
251 else:
252 title = "Candidates & residuals"
253
254 disp = afwDisplay.Display(frame=frame)
255 mosaicImage = mos.makeMosaic(display=disp, title=title)
256
257 return mosaicImage
258
259
260def showKernelBasis(kernel, frame=None):
261 """Display a Kernel's basis images.
262 """
263 mos = afwDisplay.utils.Mosaic()
264
265 for k in kernel.getKernelList():
266 im = afwImage.ImageD(k.getDimensions())
267 k.computeImage(im, False)
268 mos.append(im)
269
270 disp = afwDisplay.Display(frame=frame)
271 mos.makeMosaic(display=disp, title="Kernel Basis Images")
272
273 return mos
274
275
276
277
278def plotKernelSpatialModel(kernel, kernelCellSet, showBadCandidates=True,
279 numSample=128, keepPlots=True, maxCoeff=10):
280 """Plot the Kernel spatial model.
281 """
282 try:
283 import matplotlib.pyplot as plt
284 import matplotlib.colors
285 except ImportError as e:
286 print("Unable to import numpy and matplotlib: %s" % e)
287 return
288
289 x0 = kernelCellSet.getBBox().getBeginX()
290 y0 = kernelCellSet.getBBox().getBeginY()
291
292 candPos = list()
293 candFits = list()
294 badPos = list()
295 badFits = list()
296 candAmps = list()
297 badAmps = list()
298 for cell in kernelCellSet.getCellList():
299 for cand in cell.begin(False):
300 if not showBadCandidates and cand.isBad():
301 continue
302 candCenter = geom.PointD(cand.getXCenter(), cand.getYCenter())
303 try:
304 im = cand.getTemplateMaskedImage()
305 except Exception:
306 continue
307
308 targetFits = badFits if cand.isBad() else candFits
309 targetPos = badPos if cand.isBad() else candPos
310 targetAmps = badAmps if cand.isBad() else candAmps
311
312 # compare original and spatial kernel coefficients
313 kp0 = np.array(cand.getKernel(diffimLib.KernelCandidateF.ORIG).getKernelParameters())
314 amp = cand.getCandidateRating()
315
316 targetFits = badFits if cand.isBad() else candFits
317 targetPos = badPos if cand.isBad() else candPos
318 targetAmps = badAmps if cand.isBad() else candAmps
319
320 targetFits.append(kp0)
321 targetPos.append(candCenter)
322 targetAmps.append(amp)
323
324 xGood = np.array([pos.getX() for pos in candPos]) - x0
325 yGood = np.array([pos.getY() for pos in candPos]) - y0
326 zGood = np.array(candFits)
327
328 xBad = np.array([pos.getX() for pos in badPos]) - x0
329 yBad = np.array([pos.getY() for pos in badPos]) - y0
330 zBad = np.array(badFits)
331 numBad = len(badPos)
332
333 xRange = np.linspace(0, kernelCellSet.getBBox().getWidth(), num=numSample)
334 yRange = np.linspace(0, kernelCellSet.getBBox().getHeight(), num=numSample)
335
336 if maxCoeff:
337 maxCoeff = min(maxCoeff, kernel.getNKernelParameters())
338 else:
339 maxCoeff = kernel.getNKernelParameters()
340
341 for k in range(maxCoeff):
342 func = kernel.getSpatialFunction(k)
343 dfGood = zGood[:, k] - np.array([func(pos.getX(), pos.getY()) for pos in candPos])
344 yMin = dfGood.min()
345 yMax = dfGood.max()
346 if numBad > 0:
347 dfBad = zBad[:, k] - np.array([func(pos.getX(), pos.getY()) for pos in badPos])
348 # Can really screw up the range...
349 yMin = min([yMin, dfBad.min()])
350 yMax = max([yMax, dfBad.max()])
351 yMin -= 0.05*(yMax - yMin)
352 yMax += 0.05*(yMax - yMin)
353
354 fRange = np.ndarray((len(xRange), len(yRange)))
355 for j, yVal in enumerate(yRange):
356 for i, xVal in enumerate(xRange):
357 fRange[j][i] = func(xVal, yVal)
358
359 fig = plt.figure(k)
360
361 fig.clf()
362 try:
363 fig.canvas._tkcanvas._root().lift() # == Tk's raise, but raise is a python reserved word
364 except Exception: # protect against API changes
365 pass
366
367 fig.suptitle('Kernel component %d' % k)
368
369 # LL
370 ax = fig.add_axes((0.1, 0.05, 0.35, 0.35))
371 vmin = fRange.min() # - 0.05*np.fabs(fRange.min())
372 vmax = fRange.max() # + 0.05*np.fabs(fRange.max())
373 norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
374 im = ax.imshow(fRange, aspect='auto', norm=norm,
375 extent=[0, kernelCellSet.getBBox().getWidth() - 1,
376 0, kernelCellSet.getBBox().getHeight() - 1])
377 ax.set_title('Spatial polynomial')
378 plt.colorbar(im, orientation='horizontal', ticks=[vmin, vmax])
379
380 # UL
381 ax = fig.add_axes((0.1, 0.55, 0.35, 0.35))
382 ax.plot(-2.5*np.log10(candAmps), zGood[:, k], 'b+')
383 if numBad > 0:
384 ax.plot(-2.5*np.log10(badAmps), zBad[:, k], 'r+')
385 ax.set_title("Basis Coefficients")
386 ax.set_xlabel("Instr mag")
387 ax.set_ylabel("Coeff")
388
389 # LR
390 ax = fig.add_axes((0.55, 0.05, 0.35, 0.35))
391 ax.set_autoscale_on(False)
392 ax.set_xbound(lower=0, upper=kernelCellSet.getBBox().getHeight())
393 ax.set_ybound(lower=yMin, upper=yMax)
394 ax.plot(yGood, dfGood, 'b+')
395 if numBad > 0:
396 ax.plot(yBad, dfBad, 'r+')
397 ax.axhline(0.0)
398 ax.set_title('dCoeff (indiv-spatial) vs. y')
399
400 # UR
401 ax = fig.add_axes((0.55, 0.55, 0.35, 0.35))
402 ax.set_autoscale_on(False)
403 ax.set_xbound(lower=0, upper=kernelCellSet.getBBox().getWidth())
404 ax.set_ybound(lower=yMin, upper=yMax)
405 ax.plot(xGood, dfGood, 'b+')
406 if numBad > 0:
407 ax.plot(xBad, dfBad, 'r+')
408 ax.axhline(0.0)
409 ax.set_title('dCoeff (indiv-spatial) vs. x')
410
411 fig.show()
412
413 global keptPlots
414 if keepPlots and not keptPlots:
415 # Keep plots open when done
416 def show():
417 print("%s: Please close plots when done." % __name__)
418 try:
419 plt.show()
420 except Exception:
421 pass
422 print("Plots closed, exiting...")
423 import atexit
424 atexit.register(show)
425 keptPlots = True
426
427
428def plotKernelCoefficients(spatialKernel, kernelCellSet, showBadCandidates=False, keepPlots=True):
429 """Plot the individual kernel candidate and the spatial kernel solution coefficients.
430
431 Parameters
432 ----------
433
435 The spatial spatialKernel solution model which is a spatially varying linear combination
436 of the spatialKernel basis functions.
438
439 kernelCellSet : `lsst.afw.math.SpatialCellSet`
440 The spatial cells that was used for solution for the spatialKernel. They contain the
441 local solutions of the AL kernel for the selected sources.
442
443 showBadCandidates : `bool`, optional
444 If True, plot the coefficient values for kernel candidates where the solution was marked
445 bad by the numerical algorithm. Defaults to False.
446
447 keepPlots: `bool`, optional
448 If True, sets ``plt.show()`` to be called before the task terminates, so that the plots
449 can be explored interactively. Defaults to True.
450
451 Notes
452 -----
453 This function produces 3 figures per image subtraction operation.
454 * A grid plot of the local solutions. Each grid cell corresponds to a proportional area in
455 the image. In each cell, local kernel solution coefficients are plotted of kernel candidates (color)
456 that fall into this area as a function of the kernel basis function number.
457 * A grid plot of the spatial solution. Each grid cell corresponds to a proportional area in
458 the image. In each cell, the spatial solution coefficients are evaluated for the center of the cell.
459 * Histogram of the local solution coefficients. Red line marks the spatial solution value at
460 center of the image.
461
462 This function is called if ``lsst.ip.diffim.psfMatch.plotKernelCoefficients==True`` in lsstDebug. This
463 function was implemented as part of DM-17825.
464 """
465 try:
466 import matplotlib.pyplot as plt
467 except ImportError as e:
468 print("Unable to import matplotlib: %s" % e)
469 return
470
471 # Image dimensions
472 imgBBox = kernelCellSet.getBBox()
473 x0 = imgBBox.getBeginX()
474 y0 = imgBBox.getBeginY()
475 wImage = imgBBox.getWidth()
476 hImage = imgBBox.getHeight()
477 imgCenterX = imgBBox.getCenterX()
478 imgCenterY = imgBBox.getCenterY()
479
480 # Plot the local solutions
481 # ----
482
483 # Grid size
484 nX = 8
485 nY = 8
486 wCell = wImage / nX
487 hCell = hImage / nY
488
489 fig = plt.figure()
490 fig.suptitle("Kernel candidate parameters on an image grid")
491 arrAx = fig.subplots(nrows=nY, ncols=nX, sharex=True, sharey=True, gridspec_kw=dict(
492 wspace=0, hspace=0))
493
494 # Bottom left panel is for bottom left part of the image
495 arrAx = arrAx[::-1, :]
496
497 allParams = []
498 for cell in kernelCellSet.getCellList():
499 cellBBox = geom.Box2D(cell.getBBox())
500 # Determine which panel this spatial cell belongs to
501 iX = int((cellBBox.getCenterX() - x0)//wCell)
502 iY = int((cellBBox.getCenterY() - y0)//hCell)
503
504 for cand in cell.begin(False):
505 try:
506 kernel = cand.getKernel(cand.ORIG)
507 except Exception:
508 continue
509
510 if not showBadCandidates and cand.isBad():
511 continue
512
513 nKernelParams = kernel.getNKernelParameters()
514 kernelParams = np.array(kernel.getKernelParameters())
515 allParams.append(kernelParams)
516
517 if cand.isBad():
518 color = 'red'
519 else:
520 color = None
521 arrAx[iY, iX].plot(np.arange(nKernelParams), kernelParams, '.-',
522 color=color, drawstyle='steps-mid', linewidth=0.1)
523 for ax in arrAx.ravel():
524 ax.grid(True, axis='y')
525
526 # Plot histogram of the local parameters and the global solution at the image center
527 # ----
528
529 spatialFuncs = spatialKernel.getSpatialFunctionList()
530 nKernelParams = spatialKernel.getNKernelParameters()
531 nX = 8
532 fig = plt.figure()
533 fig.suptitle("Hist. of parameters marked with spatial solution at img center")
534 arrAx = fig.subplots(nrows=int(nKernelParams//nX)+1, ncols=nX)
535 arrAx = arrAx[::-1, :]
536 allParams = np.array(allParams)
537 for k in range(nKernelParams):
538 ax = arrAx.ravel()[k]
539 ax.hist(allParams[:, k], bins=20, edgecolor='black')
540 ax.set_xlabel('P{}'.format(k))
541 valueParam = spatialFuncs[k](imgCenterX, imgCenterY)
542 ax.axvline(x=valueParam, color='red')
543 ax.text(0.1, 0.9, '{:.1f}'.format(valueParam),
544 transform=ax.transAxes, backgroundcolor='lightsteelblue')
545
546 # Plot grid of the spatial solution
547 # ----
548
549 nX = 8
550 nY = 8
551 wCell = wImage / nX
552 hCell = hImage / nY
553 x0 += wCell / 2
554 y0 += hCell / 2
555
556 fig = plt.figure()
557 fig.suptitle("Spatial solution of kernel parameters on an image grid")
558 arrAx = fig.subplots(nrows=nY, ncols=nX, sharex=True, sharey=True, gridspec_kw=dict(
559 wspace=0, hspace=0))
560 arrAx = arrAx[::-1, :]
561 kernelParams = np.zeros(nKernelParams, dtype=float)
562
563 for iX in range(nX):
564 for iY in range(nY):
565 x = x0 + iX * wCell
566 y = y0 + iY * hCell
567 # Evaluate the spatial solution functions for this x,y location
568 kernelParams = [f(x, y) for f in spatialFuncs]
569 arrAx[iY, iX].plot(np.arange(nKernelParams), kernelParams, '.-', drawstyle='steps-mid')
570 arrAx[iY, iX].grid(True, axis='y')
571
572 global keptPlots
573 if keepPlots and not keptPlots:
574 # Keep plots open when done
575 def show():
576 print("%s: Please close plots when done." % __name__)
577 try:
578 plt.show()
579 except Exception:
580 pass
581 print("Plots closed, exiting...")
582 import atexit
583 atexit.register(show)
584 keptPlots = True
585
586
587def showKernelMosaic(bbox, kernel, nx=7, ny=None, frame=None, title=None,
588 showCenter=True, showEllipticity=True):
589 """Show a mosaic of Kernel images.
590 """
591 mos = afwDisplay.utils.Mosaic()
592
593 x0 = bbox.getBeginX()
594 y0 = bbox.getBeginY()
595 width = bbox.getWidth()
596 height = bbox.getHeight()
597
598 if not ny:
599 ny = int(nx*float(height)/width + 0.5)
600 if not ny:
601 ny = 1
602
603 schema = afwTable.SourceTable.makeMinimalSchema()
604 centroidName = "base_SdssCentroid"
605 shapeName = "base_SdssShape"
606 control = measBase.SdssCentroidControl()
607 schema.getAliasMap().set("slot_Centroid", centroidName)
608 schema.getAliasMap().set("slot_Centroid_flag", centroidName + "_flag")
609 centroider = measBase.SdssCentroidAlgorithm(control, centroidName, schema)
610 sdssShape = measBase.SdssShapeControl()
611 shaper = measBase.SdssShapeAlgorithm(sdssShape, shapeName, schema)
612 table = afwTable.SourceTable.make(schema)
613 table.defineCentroid(centroidName)
614 table.defineShape(shapeName)
615
616 centers = []
617 shapes = []
618 for iy in range(ny):
619 for ix in range(nx):
620 x = int(ix*(width - 1)/(nx - 1)) + x0
621 y = int(iy*(height - 1)/(ny - 1)) + y0
622
623 im = afwImage.ImageD(kernel.getDimensions())
624 ksum = kernel.computeImage(im, False, x, y)
625 lab = "Kernel(%d,%d)=%.2f" % (x, y, ksum) if False else ""
626 mos.append(im, lab)
627
628 # SdssCentroidAlgorithm.measure requires an exposure of floats
630
631 w, h = im.getWidth(), im.getHeight()
632 centerX = im.getX0() + w//2
633 centerY = im.getY0() + h//2
634 src = table.makeRecord()
635 spans = afwGeom.SpanSet(exp.getBBox())
636 foot = afwDet.Footprint(spans)
637 foot.addPeak(centerX, centerY, 1)
638 src.setFootprint(foot)
639
640 try: # The centroider requires a psf, so this will fail if none is attached to exp
641 centroider.measure(src, exp)
642 centers.append((src.getX(), src.getY()))
643
644 shaper.measure(src, exp)
645 shapes.append((src.getIxx(), src.getIxy(), src.getIyy()))
646 except Exception:
647 pass
648
649 disp = afwDisplay.Display(frame=frame)
650 mos.makeMosaic(display=disp, title=title if title else "Model Kernel", mode=nx)
651
652 if centers and frame is not None:
653 disp = afwDisplay.Display(frame=frame)
654 i = 0
655 with disp.Buffering():
656 for cen, shape in zip(centers, shapes):
657 bbox = mos.getBBox(i)
658 i += 1
659 xc, yc = cen[0] + bbox.getMinX(), cen[1] + bbox.getMinY()
660 if showCenter:
661 disp.dot("+", xc, yc, ctype=afwDisplay.BLUE)
662
663 if showEllipticity:
664 ixx, ixy, iyy = shape
665 disp.dot("@:%g,%g,%g" % (ixx, ixy, iyy), xc, yc, ctype=afwDisplay.RED)
666
667 return mos
668
669
670def plotPixelResiduals(exposure, warpedTemplateExposure, diffExposure, kernelCellSet,
671 kernel, background, testSources, config,
672 origVariance=False, nptsFull=1e6, keepPlots=True, titleFs=14):
673 """Plot diffim residuals for LOCAL and SPATIAL models.
674 """
675 candidateResids = []
676 spatialResids = []
677 nonfitResids = []
678
679 for cell in kernelCellSet.getCellList():
680 for cand in cell.begin(True): # only look at good ones
681 # Be sure
682 if not (cand.getStatus() == afwMath.SpatialCellCandidate.GOOD):
683 continue
684
685 diffim = cand.getDifferenceImage(diffimLib.KernelCandidateF.ORIG)
686 orig = cand.getScienceMaskedImage()
687
688 ski = afwImage.ImageD(kernel.getDimensions())
689 kernel.computeImage(ski, False, int(cand.getXCenter()), int(cand.getYCenter()))
690 sk = afwMath.FixedKernel(ski)
691 sbg = background(int(cand.getXCenter()), int(cand.getYCenter()))
692 sdiffim = cand.getDifferenceImage(sk, sbg)
693
694 # trim edgs due to convolution
695 bbox = kernel.shrinkBBox(diffim.getBBox())
696 tdiffim = diffim.Factory(diffim, bbox)
697 torig = orig.Factory(orig, bbox)
698 tsdiffim = sdiffim.Factory(sdiffim, bbox)
699
700 if origVariance:
701 candidateResids.append(np.ravel(tdiffim.getImage().getArray()
702 / np.sqrt(torig.getVariance().getArray())))
703 spatialResids.append(np.ravel(tsdiffim.getImage().getArray()
704 / np.sqrt(torig.getVariance().getArray())))
705 else:
706 candidateResids.append(np.ravel(tdiffim.getImage().getArray()
707 / np.sqrt(tdiffim.getVariance().getArray())))
708 spatialResids.append(np.ravel(tsdiffim.getImage().getArray()
709 / np.sqrt(tsdiffim.getVariance().getArray())))
710
711 fullIm = diffExposure.getMaskedImage().getImage().getArray()
712 fullMask = diffExposure.getMaskedImage().getMask().getArray()
713 if origVariance:
714 fullVar = exposure.getMaskedImage().getVariance().getArray()
715 else:
716 fullVar = diffExposure.getMaskedImage().getVariance().getArray()
717
718 bitmaskBad = 0
719 bitmaskBad |= afwImage.Mask.getPlaneBitMask('NO_DATA')
720 bitmaskBad |= afwImage.Mask.getPlaneBitMask('SAT')
721 idx = np.where((fullMask & bitmaskBad) == 0)
722 stride = int(len(idx[0])//nptsFull)
723 sidx = idx[0][::stride], idx[1][::stride]
724 allResids = fullIm[sidx]/np.sqrt(fullVar[sidx])
725
726 testFootprints = diffimTools.sourceToFootprintList(testSources, warpedTemplateExposure,
727 exposure, config,
728 getLogger(__name__).getChild("plotPixelResiduals"))
729 for fp in testFootprints:
730 subexp = diffExposure.Factory(diffExposure, fp["footprint"].getBBox())
731 subim = subexp.getMaskedImage().getImage()
732 if origVariance:
733 subvar = afwImage.ExposureF(exposure, fp["footprint"].getBBox()).getMaskedImage().getVariance()
734 else:
735 subvar = subexp.getMaskedImage().getVariance()
736 nonfitResids.append(np.ravel(subim.getArray()/np.sqrt(subvar.getArray())))
737
738 candidateResids = np.ravel(np.array(candidateResids))
739 spatialResids = np.ravel(np.array(spatialResids))
740 nonfitResids = np.ravel(np.array(nonfitResids))
741
742 try:
743 import pylab
744 from matplotlib.font_manager import FontProperties
745 except ImportError as e:
746 print("Unable to import pylab: %s" % e)
747 return
748
749 fig = pylab.figure()
750 fig.clf()
751 try:
752 fig.canvas._tkcanvas._root().lift() # == Tk's raise, but raise is a python reserved word
753 except Exception: # protect against API changes
754 pass
755 if origVariance:
756 fig.suptitle("Diffim residuals: Normalized by sqrt(input variance)", fontsize=titleFs)
757 else:
758 fig.suptitle("Diffim residuals: Normalized by sqrt(diffim variance)", fontsize=titleFs)
759
760 sp1 = pylab.subplot(221)
761 sp2 = pylab.subplot(222, sharex=sp1, sharey=sp1)
762 sp3 = pylab.subplot(223, sharex=sp1, sharey=sp1)
763 sp4 = pylab.subplot(224, sharex=sp1, sharey=sp1)
764 xs = np.arange(-5, 5.05, 0.1)
765 ys = 1./np.sqrt(2*np.pi)*np.exp(-0.5*xs**2)
766
767 sp1.hist(candidateResids, bins=xs, normed=True, alpha=0.5, label="N(%.2f, %.2f)"
768 % (np.mean(candidateResids), np.var(candidateResids)))
769 sp1.plot(xs, ys, "r-", lw=2, label="N(0,1)")
770 sp1.set_title("Candidates: basis fit", fontsize=titleFs - 2)
771 sp1.legend(loc=1, fancybox=True, shadow=True, prop=FontProperties(size=titleFs - 6))
772
773 sp2.hist(spatialResids, bins=xs, normed=True, alpha=0.5, label="N(%.2f, %.2f)"
774 % (np.mean(spatialResids), np.var(spatialResids)))
775 sp2.plot(xs, ys, "r-", lw=2, label="N(0,1)")
776 sp2.set_title("Candidates: spatial fit", fontsize=titleFs - 2)
777 sp2.legend(loc=1, fancybox=True, shadow=True, prop=FontProperties(size=titleFs - 6))
778
779 sp3.hist(nonfitResids, bins=xs, normed=True, alpha=0.5, label="N(%.2f, %.2f)"
780 % (np.mean(nonfitResids), np.var(nonfitResids)))
781 sp3.plot(xs, ys, "r-", lw=2, label="N(0,1)")
782 sp3.set_title("Control sample: spatial fit", fontsize=titleFs - 2)
783 sp3.legend(loc=1, fancybox=True, shadow=True, prop=FontProperties(size=titleFs - 6))
784
785 sp4.hist(allResids, bins=xs, normed=True, alpha=0.5, label="N(%.2f, %.2f)"
786 % (np.mean(allResids), np.var(allResids)))
787 sp4.plot(xs, ys, "r-", lw=2, label="N(0,1)")
788 sp4.set_title("Full image (subsampled)", fontsize=titleFs - 2)
789 sp4.legend(loc=1, fancybox=True, shadow=True, prop=FontProperties(size=titleFs - 6))
790
791 pylab.setp(sp1.get_xticklabels() + sp1.get_yticklabels(), fontsize=titleFs - 4)
792 pylab.setp(sp2.get_xticklabels() + sp2.get_yticklabels(), fontsize=titleFs - 4)
793 pylab.setp(sp3.get_xticklabels() + sp3.get_yticklabels(), fontsize=titleFs - 4)
794 pylab.setp(sp4.get_xticklabels() + sp4.get_yticklabels(), fontsize=titleFs - 4)
795
796 sp1.set_xlim(-5, 5)
797 sp1.set_ylim(0, 0.5)
798 fig.show()
799
800 global keptPlots
801 if keepPlots and not keptPlots:
802 # Keep plots open when done
803 def show():
804 print("%s: Please close plots when done." % __name__)
805 try:
806 pylab.show()
807 except Exception:
808 pass
809 print("Plots closed, exiting...")
810 import atexit
811 atexit.register(show)
812 keptPlots = True
813
814
815def calcCentroid(arr):
816 """Calculate first moment of a (kernel) image.
817 """
818 y, x = arr.shape
819 sarr = arr*arr
820 xarr = np.asarray([[el for el in range(x)] for el2 in range(y)])
821 yarr = np.asarray([[el2 for el in range(x)] for el2 in range(y)])
822 narr = xarr*sarr
823 sarrSum = sarr.sum()
824 centx = narr.sum()/sarrSum
825 narr = yarr*sarr
826 centy = narr.sum()/sarrSum
827 return centx, centy
828
829
830def calcWidth(arr, centx, centy):
831 """Calculate second moment of a (kernel) image.
832 """
833 y, x = arr.shape
834 # Square the flux so we don't have to deal with negatives
835 sarr = arr*arr
836 xarr = np.asarray([[el for el in range(x)] for el2 in range(y)])
837 yarr = np.asarray([[el2 for el in range(x)] for el2 in range(y)])
838 narr = sarr*np.power((xarr - centx), 2.)
839 sarrSum = sarr.sum()
840 xstd = np.sqrt(narr.sum()/sarrSum)
841 narr = sarr*np.power((yarr - centy), 2.)
842 ystd = np.sqrt(narr.sum()/sarrSum)
843 return xstd, ystd
844
845
846def printSkyDiffs(sources, wcs):
847 """Print differences in sky coordinates.
848
849 The difference is that between the source Position and its Centroid mapped
850 through Wcs.
851 """
852 for s in sources:
853 sCentroid = s.getCentroid()
854 sPosition = s.getCoord().getPosition(geom.degrees)
855 dra = 3600*(sPosition.getX() - wcs.pixelToSky(sCentroid).getPosition(geom.degrees).getX())/0.2
856 ddec = 3600*(sPosition.getY() - wcs.pixelToSky(sCentroid).getPosition(geom.degrees).getY())/0.2
857 if np.isfinite(dra) and np.isfinite(ddec):
858 print(dra, ddec)
859
860
861def makeRegions(sources, outfilename, wcs=None):
862 """Create regions file for display from input source list.
863 """
864 fh = open(outfilename, "w")
865 fh.write("global color=red font=\"helvetica 10 normal\" "
866 "select=1 highlite=1 edit=1 move=1 delete=1 include=1 fixed=0 source\nfk5\n")
867 for s in sources:
868 if wcs:
869 (ra, dec) = wcs.pixelToSky(s.getCentroid()).getPosition(geom.degrees)
870 else:
871 (ra, dec) = s.getCoord().getPosition(geom.degrees)
872 if np.isfinite(ra) and np.isfinite(dec):
873 fh.write("circle(%f,%f,2\")\n"%(ra, dec))
874 fh.flush()
875 fh.close()
876
877
878def showSourceSetSky(sSet, wcs, xy0, frame=0, ctype=afwDisplay.GREEN, symb="+", size=2):
879 """Draw the (RA, Dec) positions of a set of Sources. Image has the XY0.
880 """
881 disp = afwDisplay.Display(frame=frame)
882 with disp.Buffering():
883 for s in sSet:
884 (xc, yc) = wcs.skyToPixel(s.getCoord().getRa(), s.getCoord().getDec())
885 xc -= xy0[0]
886 yc -= xy0[1]
887 disp.dot(symb, xc, yc, ctype=ctype, size=size)
888
889
890def plotWhisker(results, newWcs):
891 """Plot whisker diagram of astromeric offsets between results.matches.
892 """
893 refCoordKey = results.matches[0].first.getTable().getCoordKey()
894 inCentroidKey = results.matches[0].second.getTable().getCentroidSlot().getMeasKey()
895 positions = [m.first.get(refCoordKey) for m in results.matches]
896 residuals = [m.first.get(refCoordKey).getOffsetFrom(
897 newWcs.pixelToSky(m.second.get(inCentroidKey))) for
898 m in results.matches]
899 import matplotlib.pyplot as plt
900 fig = plt.figure()
901 sp = fig.add_subplot(1, 1, 0)
902 xpos = [x[0].asDegrees() for x in positions]
903 ypos = [x[1].asDegrees() for x in positions]
904 xpos.append(0.02*(max(xpos) - min(xpos)) + min(xpos))
905 ypos.append(0.98*(max(ypos) - min(ypos)) + min(ypos))
906 xidxs = np.isfinite(xpos)
907 yidxs = np.isfinite(ypos)
908 X = np.asarray(xpos)[xidxs]
909 Y = np.asarray(ypos)[yidxs]
910 distance = [x[1].asArcseconds() for x in residuals]
911 distance.append(0.2)
912 distance = np.asarray(distance)[xidxs]
913 # NOTE: This assumes that the bearing is measured positive from +RA through North.
914 # From the documentation this is not clear.
915 bearing = [x[0].asRadians() for x in residuals]
916 bearing.append(0)
917 bearing = np.asarray(bearing)[xidxs]
918 U = (distance*np.cos(bearing))
919 V = (distance*np.sin(bearing))
920 sp.quiver(X, Y, U, V)
921 sp.set_title("WCS Residual")
922 plt.show()
923
924
926 """Utility class for dipole measurement testing.
927
928 Generate an image with simulated dipoles and noise; store the original
929 "pre-subtraction" images and catalogs as well.
930 Used to generate test data for DMTN-007 (http://dmtn-007.lsst.io).
931 """
932
933 def __init__(self, w=101, h=101, xcenPos=[27.], ycenPos=[25.], xcenNeg=[23.], ycenNeg=[25.],
934 psfSigma=2., flux=[30000.], fluxNeg=None, noise=10., gradientParams=None):
935 self.w = w
936 self.h = h
937 self.xcenPos = xcenPos
938 self.ycenPos = ycenPos
939 self.xcenNeg = xcenNeg
940 self.ycenNeg = ycenNeg
941 self.psfSigma = psfSigma
942 self.flux = flux
943 self.fluxNeg = fluxNeg
944 if fluxNeg is None:
945 self.fluxNeg = self.flux
946 self.noise = noise
947 self.gradientParams = gradientParams
948 self._makeDipoleImage()
949
950 def _makeDipoleImage(self):
951 """Generate an exposure and catalog with the given dipole source(s).
952 """
953 # Must seed the pos/neg images with different values to ensure they get different noise realizations
954 posImage, posCatalog = self._makeStarImage(
955 xc=self.xcenPos, yc=self.ycenPos, flux=self.flux, randomSeed=111)
956
957 negImage, negCatalog = self._makeStarImage(
958 xc=self.xcenNeg, yc=self.ycenNeg, flux=self.fluxNeg, randomSeed=222)
959
960 dipole = posImage.clone()
961 di = dipole.getMaskedImage()
962 di -= negImage.getMaskedImage()
963
964 # Carry through pos/neg detection masks to new planes in diffim
965 dm = di.getMask()
966 posDetectedBits = posImage.getMaskedImage().getMask().getArray() == dm.getPlaneBitMask("DETECTED")
967 negDetectedBits = negImage.getMaskedImage().getMask().getArray() == dm.getPlaneBitMask("DETECTED")
968 pos_det = dm.addMaskPlane("DETECTED_POS") # new mask plane -- different from "DETECTED"
969 neg_det = dm.addMaskPlane("DETECTED_NEG") # new mask plane -- different from "DETECTED_NEGATIVE"
970 dma = dm.getArray()
971 # set the two custom mask planes to these new masks
972 dma[:, :] = posDetectedBits*pos_det + negDetectedBits*neg_det
973 self.diffim, self.posImage, self.posCatalog, self.negImage, self.negCatalog \
974 = dipole, posImage, posCatalog, negImage, negCatalog
975
976 def _makeStarImage(self, xc=[15.3], yc=[18.6], flux=[2500], schema=None, randomSeed=None):
977 """Generate an exposure and catalog with the given stellar source(s).
978 """
979 from lsst.meas.base.tests import TestDataset
980 bbox = geom.Box2I(geom.Point2I(0, 0), geom.Point2I(self.w - 1, self.h - 1))
981 dataset = TestDataset(bbox, psfSigma=self.psfSigma, threshold=1.)
982
983 for i in range(len(xc)):
984 dataset.addSource(instFlux=flux[i], centroid=geom.Point2D(xc[i], yc[i]))
985
986 if schema is None:
987 schema = TestDataset.makeMinimalSchema()
988 exposure, catalog = dataset.realize(noise=self.noise, schema=schema, randomSeed=randomSeed)
989
990 if self.gradientParams is not None:
991 y, x = np.mgrid[:self.w, :self.h]
992 gp = self.gradientParams
993 gradient = gp[0] + gp[1]*x + gp[2]*y
994 if len(self.gradientParams) > 3: # it includes a set of 2nd-order polynomial params
995 gradient += gp[3]*x*y + gp[4]*x*x + gp[5]*y*y
996 imgArr = exposure.getMaskedImage().getArrays()[0]
997 imgArr += gradient
998
999 return exposure, catalog
1000
1001 def fitDipoleSource(self, source, **kwds):
1002 alg = DipoleFitAlgorithm(self.diffim, self.posImage, self.negImage)
1003 fitResult = alg.fitDipole(source, **kwds)
1004 return fitResult
1005
1006 def detectDipoleSources(self, doMerge=True, diffim=None, detectSigma=5.5, grow=3, minBinSize=32):
1007 """Utility function for detecting dipoles.
1008
1009 Detect pos/neg sources in the diffim, then merge them. A
1010 bigger "grow" parameter leads to a larger footprint which
1011 helps with dipole measurement for faint dipoles.
1012
1013 Parameters
1014 ----------
1015 doMerge : `bool`
1016 Whether to merge the positive and negagive detections into a single
1017 source table.
1018 diffim : `lsst.afw.image.exposure.exposure.ExposureF`
1019 Difference image on which to perform detection.
1020 detectSigma : `float`
1021 Threshold for object detection.
1022 grow : `int`
1023 Number of pixels to grow the footprints before merging.
1024 minBinSize : `int`
1025 Minimum bin size for the background (re)estimation (only applies if
1026 the default leads to min(nBinX, nBinY) < fit order so the default
1027 config parameter needs to be decreased, but not to a value smaller
1028 than ``minBinSize``, in which case the fitting algorithm will take
1029 over and decrease the fit order appropriately.)
1030
1031 Returns
1032 -------
1034 If doMerge=True, the merged source catalog is returned OR
1036 schema : `lsst.afw.table.Schema`
1037 If doMerge=False, the source detection task and its schema are
1038 returned.
1039 """
1040 if diffim is None:
1041 diffim = self.diffim
1042
1043 # Start with a minimal schema - only the fields all SourceCatalogs need
1044 schema = afwTable.SourceTable.makeMinimalSchema()
1045
1046 # Customize the detection task a bit (optional)
1047 detectConfig = measAlg.SourceDetectionConfig()
1048 detectConfig.returnOriginalFootprints = False # should be the default
1049
1050 diffimPsf = diffim.getPsf()
1051 psfSigma = diffimPsf.computeShape(diffimPsf.getAveragePosition()).getDeterminantRadius()
1052
1053 # code from imageDifference.py:
1054 detectConfig.thresholdPolarity = "both"
1055 detectConfig.thresholdValue = detectSigma
1056 # detectConfig.nSigmaToGrow = psfSigma
1057 detectConfig.reEstimateBackground = True # if False, will fail often for faint sources on gradients?
1058 detectConfig.thresholdType = "pixel_stdev"
1059 # Test images are often quite small, so may need to adjust background binSize
1060 while ((min(diffim.getWidth(), diffim.getHeight()))//detectConfig.background.binSize
1061 < detectConfig.background.approxOrderX and detectConfig.background.binSize > minBinSize):
1062 detectConfig.background.binSize = max(minBinSize, detectConfig.background.binSize//2)
1063
1064 # Create the detection task. We pass the schema so the task can declare a few flag fields
1065 detectTask = measAlg.SourceDetectionTask(schema, config=detectConfig)
1066
1067 table = afwTable.SourceTable.make(schema)
1068 catalog = detectTask.run(table, diffim, sigma=psfSigma)
1069
1070 # Now do the merge.
1071 if doMerge:
1072 fpSet = catalog.fpSets.positive
1073 fpSet.merge(catalog.fpSets.negative, grow, grow, False)
1074 sources = afwTable.SourceCatalog(table)
1075 fpSet.makeSources(sources)
1076
1077 return sources
1078
1079 else:
1080 return detectTask, schema
1081
1082
1083def getPsfFwhm(psf, average=True):
1084 """Directly calculate the horizontal and vertical widths
1085 of a PSF at half its maximum value.
1086
1087 Parameters
1088 ----------
1090 Point spread function (PSF) to evaluate.
1091 average : `bool`, optional
1092 Set to return the average width.
1093
1094 Returns
1095 -------
1096 psfSize : `float`, or `tuple` of `float`
1097 The FWHM of the PSF computed at its average position.
1098 Returns the widths along the Y and X axes,
1099 or the average of the two if `average` is set.
1100 """
1101 pos = psf.getAveragePosition()
1102 image = psf.computeKernelImage(pos).array
1103 peak = psf.computePeak(pos)
1104 peakLocs = np.unravel_index(np.argmax(image), image.shape)
1105
1106 def sliceWidth(image, threshold, peaks, axis):
1107 vec = image.take(peaks[1 - axis], axis=axis)
1108 low = np.interp(threshold, vec[:peaks[axis] + 1], np.arange(peaks[axis] + 1))
1109 high = np.interp(threshold, vec[:peaks[axis] - 1:-1], np.arange(len(vec) - 1, peaks[axis] - 1, -1))
1110 return high - low
1111 width = (sliceWidth(image, peak/2., peakLocs, axis=0), sliceWidth(image, peak/2., peakLocs, axis=1))
1112 return np.mean(width) if average else width
int min
int max
Class to describe the properties of a detected object from an image.
Definition: Footprint.h:63
A polymorphic base class for representing an image's Point Spread Function.
Definition: Psf.h:76
A compact representation of a collection of pixels.
Definition: SpanSet.h:78
A kernel created from an Image.
Definition: Kernel.h:471
A kernel that is a linear combination of fixed basis kernels.
Definition: Kernel.h:704
A collection of SpatialCells covering an entire image.
Definition: SpatialCell.h:383
Defines the fields and offsets for a table.
Definition: Schema.h:51
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
An integer coordinate rectangle.
Definition: Box.h:55
std::pair< std::shared_ptr< lsst::afw::math::LinearCombinationKernel >, lsst::afw::math::Kernel::SpatialFunctionPtr > getSolutionPair()
def __init__(self, w=101, h=101, xcenPos=[27.], ycenPos=[25.], xcenNeg=[23.], ycenNeg=[25.], psfSigma=2., flux=[30000.], fluxNeg=None, noise=10., gradientParams=None)
Definition: utils.py:934
def fitDipoleSource(self, source, **kwds)
Definition: utils.py:1001
def detectDipoleSources(self, doMerge=True, diffim=None, detectSigma=5.5, grow=3, minBinSize=32)
Definition: utils.py:1006
def _makeStarImage(self, xc=[15.3], yc=[18.6], flux=[2500], schema=None, randomSeed=None)
Definition: utils.py:976
daf::base::PropertyList * list
Definition: fits.cc:928
daf::base::PropertySet * set
Definition: fits.cc:927
MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > * makeMaskedImage(typename std::shared_ptr< Image< ImagePixelT > > image, typename std::shared_ptr< Mask< MaskPixelT > > mask=Mask< MaskPixelT >(), typename std::shared_ptr< Image< VariancePixelT > > variance=Image< VariancePixelT >())
A function to return a MaskedImage of the correct type (cf.
Definition: MaskedImage.h:1241
std::shared_ptr< Exposure< ImagePixelT, MaskPixelT, VariancePixelT > > makeExposure(MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > &mimage, std::shared_ptr< geom::SkyWcs const > wcs=std::shared_ptr< geom::SkyWcs const >())
A function to return an Exposure of the correct type (cf.
Definition: Exposure.h:445
def showSourceSet(sSet, xy0=(0, 0), frame=0, ctype=afwDisplay.GREEN, symb="+", size=2)
Definition: utils.py:47
def plotWhisker(results, newWcs)
Definition: utils.py:890
def plotPixelResiduals(exposure, warpedTemplateExposure, diffExposure, kernelCellSet, kernel, background, testSources, config, origVariance=False, nptsFull=1e6, keepPlots=True, titleFs=14)
Definition: utils.py:672
def showKernelBasis(kernel, frame=None)
Definition: utils.py:260
def showSourceSetSky(sSet, wcs, xy0, frame=0, ctype=afwDisplay.GREEN, symb="+", size=2)
Definition: utils.py:878
def showKernelCandidates(kernelCellSet, kernel, background, frame=None, showBadCandidates=True, resids=False, kernels=False)
Definition: utils.py:143
def printSkyDiffs(sources, wcs)
Definition: utils.py:846
def showKernelSpatialCells(maskedIm, kernelCellSet, showChi2=False, symb="o", ctype=None, ctypeUnused=None, ctypeBad=None, size=3, frame=None, title="Spatial Cells")
Definition: utils.py:69
def makeRegions(sources, outfilename, wcs=None)
Definition: utils.py:861
def showKernelMosaic(bbox, kernel, nx=7, ny=None, frame=None, title=None, showCenter=True, showEllipticity=True)
Definition: utils.py:588
def showDiaSources(sources, exposure, isFlagged, isDipole, frame=None)
Definition: utils.py:106
def plotKernelCoefficients(spatialKernel, kernelCellSet, showBadCandidates=False, keepPlots=True)
Definition: utils.py:428
def plotKernelSpatialModel(kernel, kernelCellSet, showBadCandidates=True, numSample=128, keepPlots=True, maxCoeff=10)
Definition: utils.py:279