LSST Applications g013ef56533+d2224463a4,g199a45376c+0ba108daf9,g19c4beb06c+9f335b2115,g1fd858c14a+2459ca3e43,g210f2d0738+2d3d333a78,g262e1987ae+abbb004f04,g2825c19fe3+eedc38578d,g29ae962dfc+0cb55f06ef,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+19c3a54948,g47891489e3+501a489530,g4cdb532a89+a047e97985,g511e8cfd20+ce1f47b6d6,g53246c7159+8c5ae1fdc5,g54cd7ddccb+890c8e1e5d,g5fd55ab2c7+951cc3f256,g64539dfbff+2d3d333a78,g67b6fd64d1+501a489530,g67fd3c3899+2d3d333a78,g74acd417e5+0ea5dee12c,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+501a489530,g8d7436a09f+5ea4c44d25,g8ea07a8fe4+81eaaadc04,g90f42f885a+34c0557caf,g9486f8a5af+165c016931,g97be763408+d5e351dcc8,gbf99507273+8c5ae1fdc5,gc2a301910b+2d3d333a78,gca7fc764a6+501a489530,gce8aa8abaa+8c5ae1fdc5,gd7ef33dd92+501a489530,gdab6d2f7ff+0ea5dee12c,ge410e46f29+501a489530,geaed405ab2+e3b4b2a692,gf9a733ac38+8c5ae1fdc5,w.2025.41
LSST Data Management Base Package
Loading...
Searching...
No Matches
MaskedImage Locators

(Return to Images)

(You might be interested to compare this example with the discussion of Image locators ; apart from an include file and a typedef, the only difference is the use of ImageT::Pixel(y, 0x1, 10) as the assigned pixel value instead of y).

Iterators provide access to an image, pixel by pixel. You often want access to neighbouring pixels (e.g. computing a gradient, or smoothing). Let's consider the problem of smoothing with a

1 2 1
2 4 2
1 2 1

kernel (the code's in maskedImage2.cc):

Start by including MaskedImage.h, defining a namespace for clarity:

Declare a MaskedImage

Set the image (but not the mask or variance) to a ramp

That didn't gain us much, did it? The code's a little messier than using x_iterator. But now we can add code to calculate the smoothed image. First make an output image, and copy the input pixels:

(we didn't need to copy all of them, just the ones around the edge that we won't smooth, but this is an easy way to do it).

Now do the smoothing:

(N.b. you don't really want to do this; not only is this kernel separable into 1 2 1 in first the x then the y directions, but lsst::afw::math can do convolutions for you).

Here's a faster way to do the same thing (the use of an Image::Ptr is just for variety)

The xy_loc::cached_location_t variables remember relative positions.

We can rewrite this to move setting nw, se etc. out of the loop:

You may have noticed that that kernel isn't normalised. We could change the coefficients, but that'd slow things down for integer images (such as the one here); but we can normalise after the fact by making an Image that shares pixels with the central part of out2 and manipulating it via overloaded operator/=

N.b. you can use the iterator embedded in the locator directly if you really want to, e.g.

Note that this isn't quite the same x_iterator as before, due to the need to make the x_iterator move the underlying xy_locator.

Finally write some output files and close out main():