LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
|
(Return to Images)
(You might be interested to compare this example with the discussion of Image locators ; apart from an include file and a typedef, the only difference is the use of ImageT::Pixel(y, 0x1, 10)
as the assigned pixel value instead of y
).
Iterators provide access to an image, pixel by pixel. You often want access to neighbouring pixels (e.g. computing a gradient, or smoothing). Let's consider the problem of smoothing with a
kernel (the code's in maskedImage2.cc):
Start by including MaskedImage.h, defining a namespace for clarity:
Declare a MaskedImage
Set the image (but not the mask or variance) to a ramp
That didn't gain us much, did it? The code's a little messier than using x_iterator
. But now we can add code to calculate the smoothed image. First make an output image, and copy the input pixels:
(we didn't need to copy all of them, just the ones around the edge that we won't smooth, but this is an easy way to do it).
Now do the smoothing:
(N.b. you don't really want to do this; not only is this kernel separable into 1
2
1
in first the x
then the y
directions, but lsst::afw::math
can do convolutions for you).
Here's a faster way to do the same thing (the use of an Image::Ptr
is just for variety)
The xy_loc::cached_location_t
variables remember relative positions.
We can rewrite this to move setting nw
, se
etc. out of the loop:
You may have noticed that that kernel isn't normalised. We could change the coefficients, but that'd slow things down for integer images (such as the one here); but we can normalise after the fact by making an Image that shares pixels with the central part of out2
and manipulating it via overloaded operator/=
N.b. you can use the iterator embedded in the locator directly if you really want to, e.g.
Note that this isn't quite the same x_iterator
as before, due to the need to make the x_iterator
move the underlying xy_locator
.
Finally write some output files and close out main()
: