|
LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
|
Classes | |
| class | MappingTestCase |
| class | ObjectTestCase |
Functions | |
| makePolyMapCoeffs (nIn, nOut) | |
| makeTwoWayPolyMap (nIn, nOut) | |
| makeForwardPolyMap (nIn, nOut) | |
| astshim.test.makeForwardPolyMap | ( | nIn, | |
| nOut ) |
Make an astshim.PolyMap suitable for testing The forward transform is the same as for `makeTwoWayPolyMap`. This map does not have a reverse transform. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 309 of file test.py.
| astshim.test.makePolyMapCoeffs | ( | nIn, | |
| nOut ) |
Make an array of coefficients for astshim.PolyMap for the following equation: fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ... + CNj xN^2 where: * i ranges from 0 to N=nIn-1 * j ranges from 0 to nOut-1, * Cij = 0.001 (i+j+1)
Definition at line 262 of file test.py.
| astshim.test.makeTwoWayPolyMap | ( | nIn, | |
| nOut ) |
Make an astshim.PolyMap suitable for testing
The forward transform is as follows:
fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ...
+ CNj xN^2 where Cij = 0.001 (i+j+1)
The reverse transform is the same equation with i and j reversed
thus it is NOT the inverse of the forward direction,
but is something that can be easily evaluated.
The equation is chosen for the following reasons:
- It is well defined for any positive value of nIn, nOut.
- It stays small for small x, to avoid wraparound of angles for
SpherePoint endpoints.
Definition at line 283 of file test.py.