LSST Applications g013ef56533+63812263fb,g083dd6704c+a047e97985,g199a45376c+0ba108daf9,g1fd858c14a+fde7a7a78c,g210f2d0738+db0c280453,g262e1987ae+abed931625,g29ae962dfc+058d1915d8,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+64337f1634,g47891489e3+f459a6810c,g53246c7159+8c5ae1fdc5,g54cd7ddccb+890c8e1e5d,g5a60e81ecd+d9e514a434,g64539dfbff+db0c280453,g67b6fd64d1+f459a6810c,g6ebf1fc0d4+8c5ae1fdc5,g7382096ae9+36d16ea71a,g74acd417e5+c70e70fbf6,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+f459a6810c,g8d7436a09f+1b779678e3,g8ea07a8fe4+81eaaadc04,g90f42f885a+34c0557caf,g97be763408+9583a964dd,g98a1a72a9c+028271c396,g98df359435+530b675b85,gb8cb2b794d+4e54f68785,gbf99507273+8c5ae1fdc5,gc2a301910b+db0c280453,gca7fc764a6+f459a6810c,gd7ef33dd92+f459a6810c,gdab6d2f7ff+c70e70fbf6,ge410e46f29+f459a6810c,ge41e95a9f2+db0c280453,geaed405ab2+e3b4b2a692,gf9a733ac38+8c5ae1fdc5,w.2025.43
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.afw.detection.utils Namespace Reference

Functions

 writeFootprintAsDefects (fd, foot)
 
np.ndarray footprintsToNumpy (SourceCatalog catalog, geom.Box2I|None bbox=None, tuple[int, int]|None shape=None, tuple[int, int]|None xy0=None, bool asBool=True)
 

Function Documentation

◆ footprintsToNumpy()

np.ndarray lsst.afw.detection.utils.footprintsToNumpy ( SourceCatalog catalog,
geom.Box2I | None bbox = None,
tuple[int, int] | None shape = None,
tuple[int, int] | None xy0 = None,
bool asBool = True )
Convert all of the footprints in a catalog into a boolean array.

Parameters
----------
catalog:
    The source catalog containing the footprints.
    This is typically a mergeDet catalog, or a full source catalog
    with the parents removed.
shape:
    The final shape of the output array.
xy0:
    The lower-left corner of the array that will contain the spans.

Returns
-------
result:
    The array with pixels contained in `spans` marked as `True`.

Definition at line 59 of file utils.py.

65) -> np.ndarray:
66 """Convert all of the footprints in a catalog into a boolean array.
67
68 Parameters
69 ----------
70 catalog:
71 The source catalog containing the footprints.
72 This is typically a mergeDet catalog, or a full source catalog
73 with the parents removed.
74 shape:
75 The final shape of the output array.
76 xy0:
77 The lower-left corner of the array that will contain the spans.
78
79 Returns
80 -------
81 result:
82 The array with pixels contained in `spans` marked as `True`.
83 """
84 if bbox is None and shape is None:
85 raise RuntimeError("Must provide either bbox or shape")
86
87 if bbox is not None:
88 width, height = bbox.getDimensions()
89 shape = (height, width)
90 xy0 = (bbox.getMinX(), bbox.getMinY())
91
92 if xy0 is None:
93 offset = (0, 0)
94 else:
95 offset = (-xy0[0], -xy0[1])
96
97 result = np.zeros(shape, dtype=int)
98 for src in catalog:
99 spans = src.getFootprint().spans
100 yidx, xidx = spans.shiftedBy(*offset).indices()
101 result[yidx, xidx] = src.getId()
102 if asBool:
103 result = result != 0
104 return result

◆ writeFootprintAsDefects()

lsst.afw.detection.utils.writeFootprintAsDefects ( fd,
foot )
Write foot as a set of Defects to fd

Given a detection footprint, convert it to a BBoxList and write the output to the file object fd.

Parameters
----------
fd : `typing.TextIO`
foot : `lsst.afw.detection.Footprint`

See Also
--------
lsst.afw.detection.footprintToBBoxList

Definition at line 32 of file utils.py.

32def writeFootprintAsDefects(fd, foot):
33 """
34 Write foot as a set of Defects to fd
35
36 Given a detection footprint, convert it to a BBoxList and write the output to the file object fd.
37
38 Parameters
39 ----------
40 fd : `typing.TextIO`
41 foot : `lsst.afw.detection.Footprint`
42
43 See Also
44 --------
45 lsst.afw.detection.footprintToBBoxList
46 """
47
48 bboxes = footprintToBBoxList(foot)
49 for bbox in bboxes:
50 print("""\
51Defects: {
52 x0: %4d # Starting column
53 width: %4d # number of columns
54 y0: %4d # Starting row
55 height: %4d # number of rows
56}""" % (bbox.getMinX(), bbox.getWidth(), bbox.getMinY(), bbox.getHeight()), file=fd)
57
58