LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+6b31559d11,g118115db7c+ac820e85d2,g199a45376c+5137f08352,g1fd858c14a+90100aa1a7,g262e1987ae+64df5f6984,g29ae962dfc+1eb4aece83,g2cef7863aa+73c82f25e4,g3541666cd7+1e37cdad5c,g35bb328faa+edbf708997,g3fd5ace14f+fb4e2866cc,g47891489e3+19fcc35de2,g53246c7159+edbf708997,g5b326b94bb+d622351b67,g64539dfbff+dfe1dff262,g67b6fd64d1+19fcc35de2,g74acd417e5+cfdc02aca8,g786e29fd12+af89c03590,g7aefaa3e3d+dc1a598170,g87389fa792+a4172ec7da,g88cb488625+60ba2c3075,g89139ef638+19fcc35de2,g8d4809ba88+dfe1dff262,g8d7436a09f+db94b797be,g8ea07a8fe4+79658f16ab,g90f42f885a+6577634e1f,g9722cb1a7f+d8f85438e7,g98df359435+7fdd888faa,ga2180abaac+edbf708997,ga9e74d7ce9+128cc68277,gbf99507273+edbf708997,gca7fc764a6+19fcc35de2,gd7ef33dd92+19fcc35de2,gdab6d2f7ff+cfdc02aca8,gdbb4c4dda9+dfe1dff262,ge410e46f29+19fcc35de2,ge41e95a9f2+dfe1dff262,geaed405ab2+062dfc8cdc,w.2025.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.afw.detection.utils Namespace Reference

Functions

 writeFootprintAsDefects (fd, foot)
 
np.ndarray footprintsToNumpy (SourceCatalog catalog, geom.Box2I|None bbox=None, tuple[int, int]|None shape=None, tuple[int, int]|None xy0=None, bool asBool=True)
 

Function Documentation

◆ footprintsToNumpy()

np.ndarray lsst.afw.detection.utils.footprintsToNumpy ( SourceCatalog catalog,
geom.Box2I | None bbox = None,
tuple[int, int] | None shape = None,
tuple[int, int] | None xy0 = None,
bool asBool = True )
Convert all of the footprints in a catalog into a boolean array.

Parameters
----------
catalog:
    The source catalog containing the footprints.
    This is typically a mergeDet catalog, or a full source catalog
    with the parents removed.
shape:
    The final shape of the output array.
xy0:
    The lower-left corner of the array that will contain the spans.

Returns
-------
result:
    The array with pixels contained in `spans` marked as `True`.

Definition at line 59 of file utils.py.

65) -> np.ndarray:
66 """Convert all of the footprints in a catalog into a boolean array.
67
68 Parameters
69 ----------
70 catalog:
71 The source catalog containing the footprints.
72 This is typically a mergeDet catalog, or a full source catalog
73 with the parents removed.
74 shape:
75 The final shape of the output array.
76 xy0:
77 The lower-left corner of the array that will contain the spans.
78
79 Returns
80 -------
81 result:
82 The array with pixels contained in `spans` marked as `True`.
83 """
84 if bbox is None and shape is None:
85 raise RuntimeError("Must provide either bbox or shape")
86
87 if bbox is not None:
88 width, height = bbox.getDimensions()
89 shape = (height, width)
90 xy0 = (bbox.getMinX(), bbox.getMinY())
91
92 if xy0 is None:
93 offset = (0, 0)
94 else:
95 offset = (-xy0[0], -xy0[1])
96
97 result = np.zeros(shape, dtype=int)
98 for src in catalog:
99 spans = src.getFootprint().spans
100 yidx, xidx = spans.shiftedBy(*offset).indices()
101 result[yidx, xidx] = src.getId()
102 if asBool:
103 result = result != 0
104 return result

◆ writeFootprintAsDefects()

lsst.afw.detection.utils.writeFootprintAsDefects ( fd,
foot )
Write foot as a set of Defects to fd

Given a detection footprint, convert it to a BBoxList and write the output to the file object fd.

Parameters
----------
fd : `typing.TextIO`
foot : `lsst.afw.detection.Footprint`

See Also
--------
lsst.afw.detection.footprintToBBoxList

Definition at line 32 of file utils.py.

32def writeFootprintAsDefects(fd, foot):
33 """
34 Write foot as a set of Defects to fd
35
36 Given a detection footprint, convert it to a BBoxList and write the output to the file object fd.
37
38 Parameters
39 ----------
40 fd : `typing.TextIO`
41 foot : `lsst.afw.detection.Footprint`
42
43 See Also
44 --------
45 lsst.afw.detection.footprintToBBoxList
46 """
47
48 bboxes = footprintToBBoxList(foot)
49 for bbox in bboxes:
50 print("""\
51Defects: {
52 x0: %4d # Starting column
53 width: %4d # number of columns
54 y0: %4d # Starting row
55 height: %4d # number of rows
56}""" % (bbox.getMinX(), bbox.getWidth(), bbox.getMinY(), bbox.getHeight()), file=fd)
57
58