LSST Applications g02d81e74bb+86cf3d8bc9,g180d380827+7a4e862ed4,g2079a07aa2+86d27d4dc4,g2305ad1205+e1ca1c66fa,g29320951ab+012e1474a1,g295015adf3+341ea1ce94,g2bbee38e9b+0e5473021a,g337abbeb29+0e5473021a,g33d1c0ed96+0e5473021a,g3a166c0a6a+0e5473021a,g3ddfee87b4+c429d67c83,g48712c4677+f88676dd22,g487adcacf7+27e1e21933,g50ff169b8f+96c6868917,g52b1c1532d+585e252eca,g591dd9f2cf+b41db86c35,g5a732f18d5+53520f316c,g64a986408d+86cf3d8bc9,g858d7b2824+86cf3d8bc9,g8a8a8dda67+585e252eca,g99cad8db69+84912a7fdc,g9ddcbc5298+9a081db1e4,ga1e77700b3+15fc3df1f7,ga8c6da7877+a2b54eae19,gb0e22166c9+60f28cb32d,gba4ed39666+c2a2e4ac27,gbb8dafda3b+6681f309db,gc120e1dc64+f0fcc2f6d8,gc28159a63d+0e5473021a,gcf0d15dbbd+c429d67c83,gdaeeff99f8+f9a426f77a,ge6526c86ff+0433e6603d,ge79ae78c31+0e5473021a,gee10cc3b42+585e252eca,gff1a9f87cc+86cf3d8bc9,w.2024.17
LSST Data Management Base Package
Loading...
Searching...
No Matches
Classes | Functions
lsst.ip.diffim.dcrModel Namespace Reference

Classes

class  DcrModel
 

Functions

 applyDcr (image, dcr, useInverse=False, splitSubfilters=False, splitThreshold=0., doPrefilter=True, order=3)
 
 calculateDcr (visitInfo, wcs, effectiveWavelength, bandwidth, dcrNumSubfilters, splitSubfilters=False)
 
 calculateImageParallacticAngle (visitInfo, wcs)
 
 wavelengthGenerator (effectiveWavelength, bandwidth, dcrNumSubfilters)
 

Function Documentation

◆ applyDcr()

lsst.ip.diffim.dcrModel.applyDcr ( image,
dcr,
useInverse = False,
splitSubfilters = False,
splitThreshold = 0.,
doPrefilter = True,
order = 3 )
Shift an image along the X and Y directions.

Parameters
----------
image : `numpy.ndarray`
    The input image to shift.
dcr : `tuple`
    Shift calculated with ``calculateDcr``.
    Uses numpy axes ordering (Y, X).
    If ``splitSubfilters`` is set, each element is itself a `tuple`
    of two `float`, corresponding to the DCR shift at the two wavelengths.
    Otherwise, each element is a `float` corresponding to the DCR shift at
    the effective wavelength of the subfilter.
useInverse : `bool`, optional
    Apply the shift in the opposite direction. Default: False
splitSubfilters : `bool`, optional
    Calculate DCR for two evenly-spaced wavelengths in each subfilter,
    instead of at the midpoint. Default: False
splitThreshold : `float`, optional
    Minimum DCR difference within a subfilter required to use
    ``splitSubfilters``
doPrefilter : `bool`, optional
    Spline filter the image before shifting, if set. Filtering is required,
    so only set to False if the image is already filtered.
    Filtering takes ~20% of the time of shifting, so if `applyDcr` will be
    called repeatedly on the same image it is more efficient to
    precalculate the filter.
order : `int`, optional
    The order of the spline interpolation, default is 3.

Returns
-------
shiftedImage : `numpy.ndarray`
    A copy of the input image with the specified shift applied.

Definition at line 666 of file dcrModel.py.

667 doPrefilter=True, order=3):
668 """Shift an image along the X and Y directions.
669
670 Parameters
671 ----------
672 image : `numpy.ndarray`
673 The input image to shift.
674 dcr : `tuple`
675 Shift calculated with ``calculateDcr``.
676 Uses numpy axes ordering (Y, X).
677 If ``splitSubfilters`` is set, each element is itself a `tuple`
678 of two `float`, corresponding to the DCR shift at the two wavelengths.
679 Otherwise, each element is a `float` corresponding to the DCR shift at
680 the effective wavelength of the subfilter.
681 useInverse : `bool`, optional
682 Apply the shift in the opposite direction. Default: False
683 splitSubfilters : `bool`, optional
684 Calculate DCR for two evenly-spaced wavelengths in each subfilter,
685 instead of at the midpoint. Default: False
686 splitThreshold : `float`, optional
687 Minimum DCR difference within a subfilter required to use
688 ``splitSubfilters``
689 doPrefilter : `bool`, optional
690 Spline filter the image before shifting, if set. Filtering is required,
691 so only set to False if the image is already filtered.
692 Filtering takes ~20% of the time of shifting, so if `applyDcr` will be
693 called repeatedly on the same image it is more efficient to
694 precalculate the filter.
695 order : `int`, optional
696 The order of the spline interpolation, default is 3.
697
698 Returns
699 -------
700 shiftedImage : `numpy.ndarray`
701 A copy of the input image with the specified shift applied.
702 """
703 if doPrefilter and order > 1:
704 prefilteredImage = ndimage.spline_filter(image, order=order)
705 else:
706 prefilteredImage = image
707 if splitSubfilters:
708 shiftAmp = np.max(np.abs([_dcr0 - _dcr1 for _dcr0, _dcr1 in zip(dcr[0], dcr[1])]))
709 if shiftAmp >= splitThreshold:
710 if useInverse:
711 shift = [-1.*s for s in dcr[0]]
712 shift1 = [-1.*s for s in dcr[1]]
713 else:
714 shift = dcr[0]
715 shift1 = dcr[1]
716 shiftedImage = ndimage.shift(prefilteredImage, shift, prefilter=False, order=order)
717 shiftedImage += ndimage.shift(prefilteredImage, shift1, prefilter=False, order=order)
718 shiftedImage /= 2.
719 return shiftedImage
720 else:
721 # If the difference in the DCR shifts is less than the threshold,
722 # then just use the average shift for efficiency.
723 dcr = (np.mean(dcr[0]), np.mean(dcr[1]))
724 if useInverse:
725 shift = [-1.*s for s in dcr]
726 else:
727 shift = dcr
728 shiftedImage = ndimage.shift(prefilteredImage, shift, prefilter=False, order=order)
729 return shiftedImage
730
731

◆ calculateDcr()

lsst.ip.diffim.dcrModel.calculateDcr ( visitInfo,
wcs,
effectiveWavelength,
bandwidth,
dcrNumSubfilters,
splitSubfilters = False )
Calculate the shift in pixels of an exposure due to DCR.

Parameters
----------
visitInfo : `lsst.afw.image.VisitInfo`
    Metadata for the exposure.
wcs : `lsst.afw.geom.SkyWcs`
    Coordinate system definition (wcs) for the exposure.
effectiveWavelength : `float`
    The effective wavelengths of the current filter, in nanometers.
bandwidth : `float`
    The bandwidth of the current filter, in nanometers.
dcrNumSubfilters : `int`
    Number of sub-filters used to model chromatic effects within a band.
splitSubfilters : `bool`, optional
    Calculate DCR for two evenly-spaced wavelengths in each subfilter,
    instead of at the midpoint. Default: False

Returns
-------
dcrShift : `tuple` of two `float`
    The 2D shift due to DCR, in pixels.
    Uses numpy axes ordering (Y, X).

Definition at line 732 of file dcrModel.py.

732def calculateDcr(visitInfo, wcs, effectiveWavelength, bandwidth, dcrNumSubfilters, splitSubfilters=False):
733 """Calculate the shift in pixels of an exposure due to DCR.
734
735 Parameters
736 ----------
737 visitInfo : `lsst.afw.image.VisitInfo`
738 Metadata for the exposure.
739 wcs : `lsst.afw.geom.SkyWcs`
740 Coordinate system definition (wcs) for the exposure.
741 effectiveWavelength : `float`
742 The effective wavelengths of the current filter, in nanometers.
743 bandwidth : `float`
744 The bandwidth of the current filter, in nanometers.
745 dcrNumSubfilters : `int`
746 Number of sub-filters used to model chromatic effects within a band.
747 splitSubfilters : `bool`, optional
748 Calculate DCR for two evenly-spaced wavelengths in each subfilter,
749 instead of at the midpoint. Default: False
750
751 Returns
752 -------
753 dcrShift : `tuple` of two `float`
754 The 2D shift due to DCR, in pixels.
755 Uses numpy axes ordering (Y, X).
756 """
757 rotation = calculateImageParallacticAngle(visitInfo, wcs)
758 dcrShift = []
759 weight = [0.75, 0.25]
760 for wl0, wl1 in wavelengthGenerator(effectiveWavelength, bandwidth, dcrNumSubfilters):
761 # Note that diffRefractAmp can be negative, since it's relative to the
762 # midpoint of the full band
763 diffRefractAmp0 = differentialRefraction(wavelength=wl0, wavelengthRef=effectiveWavelength,
764 elevation=visitInfo.getBoresightAzAlt().getLatitude(),
765 observatory=visitInfo.getObservatory(),
766 weather=visitInfo.getWeather())
767 diffRefractAmp1 = differentialRefraction(wavelength=wl1, wavelengthRef=effectiveWavelength,
768 elevation=visitInfo.getBoresightAzAlt().getLatitude(),
769 observatory=visitInfo.getObservatory(),
770 weather=visitInfo.getWeather())
771 if splitSubfilters:
772 diffRefractPix0 = diffRefractAmp0.asArcseconds()/wcs.getPixelScale().asArcseconds()
773 diffRefractPix1 = diffRefractAmp1.asArcseconds()/wcs.getPixelScale().asArcseconds()
774 diffRefractArr = [diffRefractPix0*weight[0] + diffRefractPix1*weight[1],
775 diffRefractPix0*weight[1] + diffRefractPix1*weight[0]]
776 shiftX = [diffRefractPix*np.sin(rotation.asRadians()) for diffRefractPix in diffRefractArr]
777 shiftY = [diffRefractPix*np.cos(rotation.asRadians()) for diffRefractPix in diffRefractArr]
778 dcrShift.append(((shiftY[0], shiftX[0]), (shiftY[1], shiftX[1])))
779 else:
780 diffRefractAmp = (diffRefractAmp0 + diffRefractAmp1)/2.
781 diffRefractPix = diffRefractAmp.asArcseconds()/wcs.getPixelScale().asArcseconds()
782 shiftX = diffRefractPix*np.sin(rotation.asRadians())
783 shiftY = diffRefractPix*np.cos(rotation.asRadians())
784 dcrShift.append((shiftY, shiftX))
785 return dcrShift
786
787

◆ calculateImageParallacticAngle()

lsst.ip.diffim.dcrModel.calculateImageParallacticAngle ( visitInfo,
wcs )
Calculate the total sky rotation angle of an exposure.

Parameters
----------
visitInfo : `lsst.afw.image.VisitInfo`
    Metadata for the exposure.
wcs : `lsst.afw.geom.SkyWcs`
    Coordinate system definition (wcs) for the exposure.

Returns
-------
`lsst.geom.Angle`
    The rotation of the image axis, East from North.
    Equal to the parallactic angle plus any additional rotation of the
    coordinate system.
    A rotation angle of 0 degrees is defined with
    North along the +y axis and East along the +x axis.
    A rotation angle of 90 degrees is defined with
    North along the +x axis and East along the -y axis.

Definition at line 788 of file dcrModel.py.

788def calculateImageParallacticAngle(visitInfo, wcs):
789 """Calculate the total sky rotation angle of an exposure.
790
791 Parameters
792 ----------
793 visitInfo : `lsst.afw.image.VisitInfo`
794 Metadata for the exposure.
795 wcs : `lsst.afw.geom.SkyWcs`
796 Coordinate system definition (wcs) for the exposure.
797
798 Returns
799 -------
800 `lsst.geom.Angle`
801 The rotation of the image axis, East from North.
802 Equal to the parallactic angle plus any additional rotation of the
803 coordinate system.
804 A rotation angle of 0 degrees is defined with
805 North along the +y axis and East along the +x axis.
806 A rotation angle of 90 degrees is defined with
807 North along the +x axis and East along the -y axis.
808 """
809 parAngle = visitInfo.getBoresightParAngle().asRadians()
810 cd = wcs.getCdMatrix()
811 if wcs.isFlipped:
812 cdAngle = (np.arctan2(-cd[0, 1], cd[0, 0]) + np.arctan2(cd[1, 0], cd[1, 1]))/2.
813 rotAngle = (cdAngle + parAngle)*geom.radians
814 else:
815 cdAngle = (np.arctan2(cd[0, 1], -cd[0, 0]) + np.arctan2(cd[1, 0], cd[1, 1]))/2.
816 rotAngle = (cdAngle - parAngle)*geom.radians
817 return rotAngle
818
819

◆ wavelengthGenerator()

lsst.ip.diffim.dcrModel.wavelengthGenerator ( effectiveWavelength,
bandwidth,
dcrNumSubfilters )
Iterate over the wavelength endpoints of subfilters.

Parameters
----------
effectiveWavelength : `float`
    The effective wavelength of the current filter, in nanometers.
bandwidth : `float`
    The bandwidth of the current filter, in nanometers.
dcrNumSubfilters : `int`
    Number of sub-filters used to model chromatic effects within a band.

Yields
------
`tuple` of two `float`
    The next set of wavelength endpoints for a subfilter, in nanometers.

Definition at line 820 of file dcrModel.py.

820def wavelengthGenerator(effectiveWavelength, bandwidth, dcrNumSubfilters):
821 """Iterate over the wavelength endpoints of subfilters.
822
823 Parameters
824 ----------
825 effectiveWavelength : `float`
826 The effective wavelength of the current filter, in nanometers.
827 bandwidth : `float`
828 The bandwidth of the current filter, in nanometers.
829 dcrNumSubfilters : `int`
830 Number of sub-filters used to model chromatic effects within a band.
831
832 Yields
833 ------
834 `tuple` of two `float`
835 The next set of wavelength endpoints for a subfilter, in nanometers.
836 """
837 lambdaMin = effectiveWavelength - bandwidth/2
838 lambdaMax = effectiveWavelength + bandwidth/2
839 wlStep = bandwidth/dcrNumSubfilters
840 for wl in np.linspace(lambdaMin, lambdaMax, dcrNumSubfilters, endpoint=False):
841 yield (wl, wl + wlStep)