Loading [MathJax]/extensions/tex2jax.js
LSST Applications g04a91732dc+9666464c73,g0fba68d861+d6c6f70ffa,g1fd858c14a+94f68680cf,g208c678f98+1ca806343c,g271391ec13+ac98094cfc,g2c84ff76c0+120a924478,g2c9e612ef2+a92a2e6025,g35bb328faa+fcb1d3bbc8,g4d2262a081+7c332456db,g4e0f332c67+c58e4b632d,g53246c7159+fcb1d3bbc8,g60b5630c4e+a92a2e6025,g67b6fd64d1+9d1b2ab50a,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g8852436030+506db7da85,g89139ef638+9d1b2ab50a,g8d6b6b353c+a92a2e6025,g9125e01d80+fcb1d3bbc8,g989de1cb63+9d1b2ab50a,g9f33ca652e+d1749da127,ga2b97cdc51+a92a2e6025,gabe3b4be73+1e0a283bba,gb1101e3267+6ecbd0580e,gb58c049af0+f03b321e39,gb89ab40317+9d1b2ab50a,gb90eeb9370+384e1fc23b,gcf25f946ba+506db7da85,gd315a588df+382ef11c06,gd6cbbdb0b4+75aa4b1db4,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+9984fb7d9e,ge278dab8ac+c61fbefdff,ge410e46f29+9d1b2ab50a,ge82c20c137+e12a08b75a,gf67bdafdda+9d1b2ab50a,gfd5510ef7b+864ead200a,v29.0.0.rc2
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
lsst.ip.isr.ptcDataset Namespace Reference

Classes

class  PhotonTransferCurveDataset
 

Functions

 symmetrize (inputArray)
 

Detailed Description

Define dataset class for MeasurePhotonTransferCurve task

Function Documentation

◆ symmetrize()

lsst.ip.isr.ptcDataset.symmetrize ( inputArray)
 Copy array over 4 quadrants prior to convolution.

Parameters
----------
inputarray : `numpy.array`
    Input array to symmetrize.

Returns
-------
aSym : `numpy.array`
    Symmetrized array.

Definition at line 40 of file ptcDataset.py.

40def symmetrize(inputArray):
41 """ Copy array over 4 quadrants prior to convolution.
42
43 Parameters
44 ----------
45 inputarray : `numpy.array`
46 Input array to symmetrize.
47
48 Returns
49 -------
50 aSym : `numpy.array`
51 Symmetrized array.
52 """
53
54 targetShape = list(inputArray.shape)
55 r1, r2 = inputArray.shape[-1], inputArray.shape[-2]
56 targetShape[-1] = 2*r1-1
57 targetShape[-2] = 2*r2-1
58 aSym = np.ndarray(tuple(targetShape))
59 aSym[..., r2-1:, r1-1:] = inputArray
60 aSym[..., r2-1:, r1-1::-1] = inputArray
61 aSym[..., r2-1::-1, r1-1::-1] = inputArray
62 aSym[..., r2-1::-1, r1-1:] = inputArray
63
64 return aSym
65
66