LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+6b31559d11,g199a45376c+5137f08352,g1fd858c14a+90100aa1a7,g262e1987ae+64df5f6984,g29ae962dfc+ea1b4bf624,g2cef7863aa+73c82f25e4,g3541666cd7+1e37cdad5c,g35bb328faa+edbf708997,g3fd5ace14f+fb4e2866cc,g47891489e3+19fcc35de2,g53246c7159+edbf708997,g5b326b94bb+25bfd59086,g64539dfbff+dfe1dff262,g67b6fd64d1+19fcc35de2,g74acd417e5+cfdc02aca8,g786e29fd12+af89c03590,g7aefaa3e3d+dc1a598170,g87389fa792+a4172ec7da,g88cb488625+cdc2ed4845,g89139ef638+19fcc35de2,g8d4809ba88+dfe1dff262,g8d7436a09f+3f64a17d9b,g8ea07a8fe4+79658f16ab,g90f42f885a+6577634e1f,g9722cb1a7f+d8f85438e7,g98df359435+c23a5f51ca,ga2180abaac+edbf708997,ga9e74d7ce9+128cc68277,gbf99507273+edbf708997,gca7fc764a6+19fcc35de2,gd7ef33dd92+19fcc35de2,gdab6d2f7ff+cfdc02aca8,gdbb4c4dda9+dfe1dff262,ge410e46f29+19fcc35de2,ge41e95a9f2+dfe1dff262,ge8e7e3f09d+87bbe2f199,geaed405ab2+062dfc8cdc,w.2025.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.meas.algorithms.pcaPsfDeterminer Namespace Reference

Classes

class  PcaPsfDeterminerConfig
 
class  PcaPsfDeterminerTask
 

Functions

 numCandidatesToReject (numBadCandidates, numIter, totalIter)
 
 candidatesIter (psfCellSet, ignoreBad=True)
 

Function Documentation

◆ candidatesIter()

lsst.meas.algorithms.pcaPsfDeterminer.candidatesIter ( psfCellSet,
ignoreBad = True )
Generator for Psf candidates.

This allows two 'for' loops to be reduced to one.

Parameters
----------
psfCellSet : `lsst.afw.math.SpatialCellSet`
   SpatialCellSet of PSF candidates.
ignoreBad : `bool`, optional
   Ignore candidates flagged as BAD?

Yields
-------
cell : `lsst.afw.math.SpatialCell`
   A SpatialCell.
cand : `lsst.meas.algorithms.PsfCandidate`
  A PsfCandidate.

Definition at line 631 of file pcaPsfDeterminer.py.

631def candidatesIter(psfCellSet, ignoreBad=True):
632 """Generator for Psf candidates.
633
634 This allows two 'for' loops to be reduced to one.
635
636 Parameters
637 ----------
638 psfCellSet : `lsst.afw.math.SpatialCellSet`
639 SpatialCellSet of PSF candidates.
640 ignoreBad : `bool`, optional
641 Ignore candidates flagged as BAD?
642
643 Yields
644 -------
645 cell : `lsst.afw.math.SpatialCell`
646 A SpatialCell.
647 cand : `lsst.meas.algorithms.PsfCandidate`
648 A PsfCandidate.
649 """
650 for cell in psfCellSet.getCellList():
651 for cand in cell.begin(ignoreBad):
652 yield (cell, cand)
653
654

◆ numCandidatesToReject()

lsst.meas.algorithms.pcaPsfDeterminer.numCandidatesToReject ( numBadCandidates,
numIter,
totalIter )
Return the number of PSF candidates to be rejected.

The number of candidates being rejected on each iteration gradually
increases, so that on the Nth of M iterations we reject N/M of the bad
candidates.

Parameters
----------
numBadCandidates : `int`
    Number of bad candidates under consideration.

numIter : `int`
    The number of the current PSF iteration.

totalIter : `int`
    The total number of PSF iterations.

Returns
-------
return : `int`
    Number of candidates to reject.

Definition at line 43 of file pcaPsfDeterminer.py.

43def numCandidatesToReject(numBadCandidates, numIter, totalIter):
44 """Return the number of PSF candidates to be rejected.
45
46 The number of candidates being rejected on each iteration gradually
47 increases, so that on the Nth of M iterations we reject N/M of the bad
48 candidates.
49
50 Parameters
51 ----------
52 numBadCandidates : `int`
53 Number of bad candidates under consideration.
54
55 numIter : `int`
56 The number of the current PSF iteration.
57
58 totalIter : `int`
59 The total number of PSF iterations.
60
61 Returns
62 -------
63 return : `int`
64 Number of candidates to reject.
65 """
66 return int(numBadCandidates*(numIter + 1)//totalIter + 0.5)
67
68