LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Classes | Functions
lsst.meas.algorithms.pcaPsfDeterminer Namespace Reference

Classes

class  PcaPsfDeterminerConfig
 
class  PcaPsfDeterminerTask
 

Functions

 numCandidatesToReject (numBadCandidates, numIter, totalIter)
 
 candidatesIter (psfCellSet, ignoreBad=True)
 

Function Documentation

◆ candidatesIter()

lsst.meas.algorithms.pcaPsfDeterminer.candidatesIter ( psfCellSet,
ignoreBad = True )
Generator for Psf candidates.

This allows two 'for' loops to be reduced to one.

Parameters
----------
psfCellSet : `lsst.afw.math.SpatialCellSet`
   SpatialCellSet of PSF candidates.
ignoreBad : `bool`, optional
   Ignore candidates flagged as BAD?

Yields
-------
cell : `lsst.afw.math.SpatialCell`
   A SpatialCell.
cand : `lsst.meas.algorithms.PsfCandidate`
  A PsfCandidate.

Definition at line 631 of file pcaPsfDeterminer.py.

631def candidatesIter(psfCellSet, ignoreBad=True):
632 """Generator for Psf candidates.
633
634 This allows two 'for' loops to be reduced to one.
635
636 Parameters
637 ----------
638 psfCellSet : `lsst.afw.math.SpatialCellSet`
639 SpatialCellSet of PSF candidates.
640 ignoreBad : `bool`, optional
641 Ignore candidates flagged as BAD?
642
643 Yields
644 -------
645 cell : `lsst.afw.math.SpatialCell`
646 A SpatialCell.
647 cand : `lsst.meas.algorithms.PsfCandidate`
648 A PsfCandidate.
649 """
650 for cell in psfCellSet.getCellList():
651 for cand in cell.begin(ignoreBad):
652 yield (cell, cand)
653
654

◆ numCandidatesToReject()

lsst.meas.algorithms.pcaPsfDeterminer.numCandidatesToReject ( numBadCandidates,
numIter,
totalIter )
Return the number of PSF candidates to be rejected.

The number of candidates being rejected on each iteration gradually
increases, so that on the Nth of M iterations we reject N/M of the bad
candidates.

Parameters
----------
numBadCandidates : `int`
    Number of bad candidates under consideration.

numIter : `int`
    The number of the current PSF iteration.

totalIter : `int`
    The total number of PSF iterations.

Returns
-------
return : `int`
    Number of candidates to reject.

Definition at line 43 of file pcaPsfDeterminer.py.

43def numCandidatesToReject(numBadCandidates, numIter, totalIter):
44 """Return the number of PSF candidates to be rejected.
45
46 The number of candidates being rejected on each iteration gradually
47 increases, so that on the Nth of M iterations we reject N/M of the bad
48 candidates.
49
50 Parameters
51 ----------
52 numBadCandidates : `int`
53 Number of bad candidates under consideration.
54
55 numIter : `int`
56 The number of the current PSF iteration.
57
58 totalIter : `int`
59 The total number of PSF iterations.
60
61 Returns
62 -------
63 return : `int`
64 Number of candidates to reject.
65 """
66 return int(numBadCandidates*(numIter + 1)//totalIter + 0.5)
67
68