LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+6b31559d11,g118115db7c+ac820e85d2,g199a45376c+5137f08352,g1fd858c14a+90100aa1a7,g262e1987ae+64df5f6984,g29ae962dfc+1eb4aece83,g2cef7863aa+73c82f25e4,g3541666cd7+1e37cdad5c,g35bb328faa+edbf708997,g3fd5ace14f+fb4e2866cc,g47891489e3+19fcc35de2,g53246c7159+edbf708997,g5b326b94bb+d622351b67,g64539dfbff+dfe1dff262,g67b6fd64d1+19fcc35de2,g74acd417e5+cfdc02aca8,g786e29fd12+af89c03590,g7aefaa3e3d+dc1a598170,g87389fa792+a4172ec7da,g88cb488625+60ba2c3075,g89139ef638+19fcc35de2,g8d4809ba88+dfe1dff262,g8d7436a09f+db94b797be,g8ea07a8fe4+79658f16ab,g90f42f885a+6577634e1f,g9722cb1a7f+d8f85438e7,g98df359435+7fdd888faa,ga2180abaac+edbf708997,ga9e74d7ce9+128cc68277,gbf99507273+edbf708997,gca7fc764a6+19fcc35de2,gd7ef33dd92+19fcc35de2,gdab6d2f7ff+cfdc02aca8,gdbb4c4dda9+dfe1dff262,ge410e46f29+19fcc35de2,ge41e95a9f2+dfe1dff262,geaed405ab2+062dfc8cdc,w.2025.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst::meas::astrom::detail Namespace Reference

Classes

class  BinomialMatrix
 A class that computes binomial coefficients up to a certain power. More...
 

Functions

int computePackedOffset (int order)
 Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.
 
int computePackedSize (int order)
 Compute this size of a packed 2-d polynomial coefficient array.
 
void computePowers (Eigen::VectorXd &r, double x)
 Fill an array with integer powers of x, so \($r[n] == r^n\).
 
Eigen::VectorXd computePowers (double x, int n)
 Return an array with integer powers of x, so \($r[n] == r^n\).
 

Function Documentation

◆ computePackedOffset()

int lsst::meas::astrom::detail::computePackedOffset ( int order)
inline

Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.

This defines the ordering as

[(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...]

(or the same with indices swapped).

Definition at line 45 of file polynomialUtils.h.

45{ return (order * (order + 1)) / 2; }

◆ computePackedSize()

int lsst::meas::astrom::detail::computePackedSize ( int order)
inline

Compute this size of a packed 2-d polynomial coefficient array.

Definition at line 50 of file polynomialUtils.h.

50{ return computePackedOffset(order + 1); }
int computePackedOffset(int order)
Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficien...

◆ computePowers() [1/2]

Eigen::VectorXd lsst::meas::astrom::detail::computePowers ( double x,
int n )

Return an array with integer powers of x, so \($r[n] == r^n\).

When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().

Definition at line 40 of file polynomialUtils.cc.

40 {
41 Eigen::VectorXd r(n + 1);
42 computePowers(r, x);
43 return r;
44}
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .

◆ computePowers() [2/2]

void lsst::meas::astrom::detail::computePowers ( Eigen::VectorXd & r,
double x )

Fill an array with integer powers of x, so \($r[n] == r^n\).

When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().

Definition at line 33 of file polynomialUtils.cc.

33 {
34 r[0] = 1.0;
35 for (int i = 1; i < r.size(); ++i) {
36 r[i] = r[i - 1] * x;
37 }
38}