LSST Applications g013ef56533+63812263fb,g083dd6704c+a047e97985,g199a45376c+0ba108daf9,g1fd858c14a+fde7a7a78c,g210f2d0738+db0c280453,g262e1987ae+abed931625,g29ae962dfc+058d1915d8,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+64337f1634,g47891489e3+f459a6810c,g53246c7159+8c5ae1fdc5,g54cd7ddccb+890c8e1e5d,g5a60e81ecd+d9e514a434,g64539dfbff+db0c280453,g67b6fd64d1+f459a6810c,g6ebf1fc0d4+8c5ae1fdc5,g7382096ae9+36d16ea71a,g74acd417e5+c70e70fbf6,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+f459a6810c,g8d7436a09f+1b779678e3,g8ea07a8fe4+81eaaadc04,g90f42f885a+34c0557caf,g97be763408+9583a964dd,g98a1a72a9c+028271c396,g98df359435+530b675b85,gb8cb2b794d+4e54f68785,gbf99507273+8c5ae1fdc5,gc2a301910b+db0c280453,gca7fc764a6+f459a6810c,gd7ef33dd92+f459a6810c,gdab6d2f7ff+c70e70fbf6,ge410e46f29+f459a6810c,ge41e95a9f2+db0c280453,geaed405ab2+e3b4b2a692,gf9a733ac38+8c5ae1fdc5,w.2025.43
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst::meas::astrom::detail Namespace Reference

Classes

class  BinomialMatrix
 A class that computes binomial coefficients up to a certain power. More...
 

Functions

int computePackedOffset (int order)
 Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.
 
int computePackedSize (int order)
 Compute this size of a packed 2-d polynomial coefficient array.
 
void computePowers (Eigen::VectorXd &r, double x)
 Fill an array with integer powers of x, so \($r[n] == r^n\).
 
Eigen::VectorXd computePowers (double x, int n)
 Return an array with integer powers of x, so \($r[n] == r^n\).
 

Function Documentation

◆ computePackedOffset()

int lsst::meas::astrom::detail::computePackedOffset ( int order)
inline

Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.

This defines the ordering as

[(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...]

(or the same with indices swapped).

Definition at line 45 of file polynomialUtils.h.

45{ return (order * (order + 1)) / 2; }

◆ computePackedSize()

int lsst::meas::astrom::detail::computePackedSize ( int order)
inline

Compute this size of a packed 2-d polynomial coefficient array.

Definition at line 50 of file polynomialUtils.h.

50{ return computePackedOffset(order + 1); }
int computePackedOffset(int order)
Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficien...

◆ computePowers() [1/2]

Eigen::VectorXd lsst::meas::astrom::detail::computePowers ( double x,
int n )

Return an array with integer powers of x, so \($r[n] == r^n\).

When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().

Definition at line 40 of file polynomialUtils.cc.

40 {
41 Eigen::VectorXd r(n + 1);
42 computePowers(r, x);
43 return r;
44}
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .

◆ computePowers() [2/2]

void lsst::meas::astrom::detail::computePowers ( Eigen::VectorXd & r,
double x )

Fill an array with integer powers of x, so \($r[n] == r^n\).

When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().

Definition at line 33 of file polynomialUtils.cc.

33 {
34 r[0] = 1.0;
35 for (int i = 1; i < r.size(); ++i) {
36 r[i] = r[i - 1] * x;
37 }
38}