|
LSST Applications g00d0e8bbd7+edbf708997,g03191d30f7+6b31559d11,g118115db7c+ac820e85d2,g199a45376c+5137f08352,g1fd858c14a+90100aa1a7,g262e1987ae+64df5f6984,g29ae962dfc+1eb4aece83,g2cef7863aa+73c82f25e4,g3541666cd7+1e37cdad5c,g35bb328faa+edbf708997,g3fd5ace14f+fb4e2866cc,g47891489e3+19fcc35de2,g53246c7159+edbf708997,g5b326b94bb+d622351b67,g64539dfbff+dfe1dff262,g67b6fd64d1+19fcc35de2,g74acd417e5+cfdc02aca8,g786e29fd12+af89c03590,g7aefaa3e3d+dc1a598170,g87389fa792+a4172ec7da,g88cb488625+60ba2c3075,g89139ef638+19fcc35de2,g8d4809ba88+dfe1dff262,g8d7436a09f+db94b797be,g8ea07a8fe4+79658f16ab,g90f42f885a+6577634e1f,g9722cb1a7f+d8f85438e7,g98df359435+7fdd888faa,ga2180abaac+edbf708997,ga9e74d7ce9+128cc68277,gbf99507273+edbf708997,gca7fc764a6+19fcc35de2,gd7ef33dd92+19fcc35de2,gdab6d2f7ff+cfdc02aca8,gdbb4c4dda9+dfe1dff262,ge410e46f29+19fcc35de2,ge41e95a9f2+dfe1dff262,geaed405ab2+062dfc8cdc,w.2025.46
LSST Data Management Base Package
|
Classes | |
| class | BinomialMatrix |
| A class that computes binomial coefficients up to a certain power. More... | |
Functions | |
| int | computePackedOffset (int order) |
| Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array. | |
| int | computePackedSize (int order) |
| Compute this size of a packed 2-d polynomial coefficient array. | |
| void | computePowers (Eigen::VectorXd &r, double x) |
| Fill an array with integer powers of x, so \($r[n] == r^n\). | |
| Eigen::VectorXd | computePowers (double x, int n) |
| Return an array with integer powers of x, so \($r[n] == r^n\). | |
|
inline |
Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.
This defines the ordering as
(or the same with indices swapped).
Definition at line 45 of file polynomialUtils.h.
|
inline |
Compute this size of a packed 2-d polynomial coefficient array.
Definition at line 50 of file polynomialUtils.h.
| Eigen::VectorXd lsst::meas::astrom::detail::computePowers | ( | double | x, |
| int | n ) |
Return an array with integer powers of x, so \($r[n] == r^n\).
When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().
Definition at line 40 of file polynomialUtils.cc.
| void lsst::meas::astrom::detail::computePowers | ( | Eigen::VectorXd & | r, |
| double | x ) |
Fill an array with integer powers of x, so \($r[n] == r^n\).
When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().
Definition at line 33 of file polynomialUtils.cc.