LSST Applications g04e9c324dd+8c5ae1fdc5,g134cb467dc+b203dec576,g18429d2f64+358861cd2c,g199a45376c+0ba108daf9,g1fd858c14a+dd066899e3,g262e1987ae+ebfced1d55,g29ae962dfc+72fd90588e,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+b668f15bc5,g4595892280+3897dae354,g47891489e3+abcf9c3559,g4d44eb3520+fb4ddce128,g53246c7159+8c5ae1fdc5,g67b6fd64d1+abcf9c3559,g67fd3c3899+1f72b5a9f7,g74acd417e5+cb6b47f07b,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+abcf9c3559,g8d7436a09f+bcf525d20c,g8ea07a8fe4+9f5ccc88ac,g90f42f885a+6054cc57f1,g97be763408+06f794da49,g9dd6db0277+1f72b5a9f7,ga681d05dcb+7e36ad54cd,gabf8522325+735880ea63,gac2eed3f23+abcf9c3559,gb89ab40317+abcf9c3559,gbf99507273+8c5ae1fdc5,gd8ff7fe66e+1f72b5a9f7,gdab6d2f7ff+cb6b47f07b,gdc713202bf+1f72b5a9f7,gdfd2d52018+8225f2b331,ge365c994fd+375fc21c71,ge410e46f29+abcf9c3559,geaed405ab2+562b3308c0,gf9a733ac38+8c5ae1fdc5,w.2025.35
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst::meas::astrom::detail Namespace Reference

Classes

class  BinomialMatrix
 A class that computes binomial coefficients up to a certain power. More...
 

Functions

int computePackedOffset (int order)
 Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.
 
int computePackedSize (int order)
 Compute this size of a packed 2-d polynomial coefficient array.
 
void computePowers (Eigen::VectorXd &r, double x)
 Fill an array with integer powers of x, so \($r[n] == r^n\).
 
Eigen::VectorXd computePowers (double x, int n)
 Return an array with integer powers of x, so \($r[n] == r^n\).
 

Function Documentation

◆ computePackedOffset()

int lsst::meas::astrom::detail::computePackedOffset ( int order)
inline

Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.

This defines the ordering as

[(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...]

(or the same with indices swapped).

Definition at line 45 of file polynomialUtils.h.

45{ return (order * (order + 1)) / 2; }

◆ computePackedSize()

int lsst::meas::astrom::detail::computePackedSize ( int order)
inline

Compute this size of a packed 2-d polynomial coefficient array.

Definition at line 50 of file polynomialUtils.h.

50{ return computePackedOffset(order + 1); }
int computePackedOffset(int order)
Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficien...

◆ computePowers() [1/2]

Eigen::VectorXd lsst::meas::astrom::detail::computePowers ( double x,
int n )

Return an array with integer powers of x, so \($r[n] == r^n\).

When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().

Definition at line 40 of file polynomialUtils.cc.

40 {
41 Eigen::VectorXd r(n + 1);
42 computePowers(r, x);
43 return r;
44}
void computePowers(Eigen::VectorXd &r, double x)
Fill an array with integer powers of x, so .

◆ computePowers() [2/2]

void lsst::meas::astrom::detail::computePowers ( Eigen::VectorXd & r,
double x )

Fill an array with integer powers of x, so \($r[n] == r^n\).

When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().

Definition at line 33 of file polynomialUtils.cc.

33 {
34 r[0] = 1.0;
35 for (int i = 1; i < r.size(); ++i) {
36 r[i] = r[i - 1] * x;
37 }
38}