LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
|
Classes | |
class | BinomialMatrix |
A class that computes binomial coefficients up to a certain power. More... | |
Functions | |
int | computePackedOffset (int order) |
Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array. | |
int | computePackedSize (int order) |
Compute this size of a packed 2-d polynomial coefficient array. | |
void | computePowers (Eigen::VectorXd &r, double x) |
Fill an array with integer powers of x, so \($r[n] == r^n\). | |
Eigen::VectorXd | computePowers (double x, int n) |
Return an array with integer powers of x, so \($r[n] == r^n\). | |
|
inline |
Compute the index of the first coefficient with the given order in a packed 2-d polynomial coefficient array.
This defines the ordering as
(or the same with indices swapped).
Definition at line 45 of file polynomialUtils.h.
|
inline |
Compute this size of a packed 2-d polynomial coefficient array.
Definition at line 50 of file polynomialUtils.h.
Eigen::VectorXd lsst::meas::astrom::detail::computePowers | ( | double | x, |
int | n ) |
Return an array with integer powers of x, so \($r[n] == r^n\).
When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().
Definition at line 40 of file polynomialUtils.cc.
void lsst::meas::astrom::detail::computePowers | ( | Eigen::VectorXd & | r, |
double | x ) |
Fill an array with integer powers of x, so \($r[n] == r^n\).
When multiple powers are needed, this should be signficantly faster than repeated calls to std::pow().
Definition at line 33 of file polynomialUtils.cc.