|
LSST Applications g00d0e8bbd7+8c5ae1fdc5,g013ef56533+603670b062,g083dd6704c+2e189452a7,g199a45376c+0ba108daf9,g1c5cce2383+bc9f6103a4,g1fd858c14a+cd69ed4fc1,g210f2d0738+c4742f2e9e,g262e1987ae+612fa42d85,g29ae962dfc+83d129e820,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+5eaa884f2a,g47891489e3+e32160a944,g53246c7159+8c5ae1fdc5,g5b326b94bb+dcc56af22d,g64539dfbff+c4742f2e9e,g67b6fd64d1+e32160a944,g74acd417e5+c122e1277d,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g88cb488625+47d24e4084,g89139ef638+e32160a944,g8d7436a09f+d14b4ff40a,g8ea07a8fe4+b212507b11,g90f42f885a+e1755607f3,g97be763408+34be90ab8c,g98df359435+ec1fa61bf1,ga2180abaac+8c5ae1fdc5,ga9e74d7ce9+43ac651df0,gbf99507273+8c5ae1fdc5,gc2a301910b+c4742f2e9e,gca7fc764a6+e32160a944,gd7ef33dd92+e32160a944,gdab6d2f7ff+c122e1277d,gdb1e2cdc75+1b18322db8,ge410e46f29+e32160a944,ge41e95a9f2+c4742f2e9e,geaed405ab2+0d91c11c6d,w.2025.44
LSST Data Management Base Package
|
Namespaces | |
| namespace | cmodel |
| namespace | common |
| namespace | detail |
| namespace | optimizer |
| namespace | pixelFitRegion |
| namespace | priors |
| namespace | psf |
| namespace | version |
Classes | |
| class | AdaptiveImportanceSampler |
| Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distribution from which points are drawn. More... | |
| class | CModelAlgorithm |
| Main public interface class for CModel algorithm. More... | |
| struct | CModelControl |
| The main control object for CModel, containing parameters for the final linear fit and aggregating the other control objects. More... | |
| struct | CModelResult |
| Master result object for CModel, containing results for the final linear fit and three nested CModelStageResult objects for the results of the previous stages. More... | |
| struct | CModelStageControl |
| Nested control object for CModel that configures one of the three ("initial", "exp", "dev") nonlinear fitting stages. More... | |
| struct | CModelStageResult |
| Result object for a single nonlinear fitting stage of the CModel algorithm. More... | |
| class | DoubleShapeletPsfApproxAlgorithm |
| An algorithm that fits a 2-component shapelet approximation to the PSF model. More... | |
| class | DoubleShapeletPsfApproxControl |
| Control object used to configure a 2-shapelet fit to a PSF model; see DoubleShapeletPsfApproxAlgorithm. More... | |
| class | EpochFootprint |
| An image at one epoch of a galaxy, plus associated info. More... | |
| class | GeneralPsfFitter |
| Class for fitting multishapelet models to PSF images. More... | |
| class | GeneralPsfFitterAlgorithm |
| class | GeneralPsfFitterComponentControl |
| Control object used to define one piece of multishapelet fit to a PSF model; see GeneralPsfFitterControl. More... | |
| class | GeneralPsfFitterControl |
| Control object used to configure a multishapelet fit to a PSF model; see GeneralPsfFitter. More... | |
| class | ImportanceSamplerControl |
| Control object for one iteration of adaptive importance sampling. More... | |
| class | Likelihood |
| Base class for optimizer/sampler likelihood functions that compute likelihood at a point. More... | |
| struct | LocalUnitTransform |
| A local mapping between two UnitSystems. More... | |
| class | Mixture |
| class | MixtureComponent |
| A weighted Student's T or Gaussian distribution used as a component in a Mixture. More... | |
| class | MixturePrior |
| A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters. More... | |
| class | MixtureUpdateRestriction |
| Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM. More... | |
| class | Model |
| Abstract base class and concrete factories that define multi-shapelet galaxy models. More... | |
| class | MultiModel |
| A concrete Model class that simply concatenates several other Models. More... | |
| class | MultiShapeletPsfLikelihood |
| Likelihood object used to fit multishapelet models to PSF model images; mostly for internal use by GeneralPsfFitter. More... | |
| class | Optimizer |
| A numerical optimizer customized for least-squares problems with Bayesian priors. More... | |
| class | OptimizerControl |
| Configuration object for Optimizer. More... | |
| class | OptimizerHistoryRecorder |
| class | OptimizerObjective |
| Base class for objective functions for Optimizer. More... | |
| class | PixelFitRegion |
| struct | PixelFitRegionControl |
| class | Prior |
| Base class for Bayesian priors. More... | |
| class | Sampler |
| class | SamplingObjective |
| class | SemiEmpiricalPrior |
| A piecewise prior motivated by both real distributions and practical considerations. More... | |
| struct | SemiEmpiricalPriorControl |
| class | SoftenedLinearPrior |
| A prior that's linear in radius and flat in ellipticity, with a cubic roll-off at the edges. More... | |
| struct | SoftenedLinearPriorControl |
| class | TruncatedGaussian |
| Represents a multidimensional Gaussian function truncated at zero. More... | |
| class | TruncatedGaussianEvaluator |
| Helper class for evaluating the -log of a TruncatedGaussian. More... | |
| class | TruncatedGaussianLogEvaluator |
| Helper class for evaluating the -log of a TruncatedGaussian. More... | |
| class | TruncatedGaussianSampler |
| Helper class for drawing samples from a TruncatedGaussian. More... | |
| struct | UnitSystem |
| A simple struct that combines a Wcs and a PhotoCalib. More... | |
| class | UnitTransformedLikelihood |
| A concrete Likelihood class that does not require its parameters and data to be in the same UnitSystem. More... | |
| class | UnitTransformedLikelihoodControl |
| Control object used to initialize a UnitTransformedLikelihood. More... | |
| typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> lsst::meas::modelfit::Matrix |
| typedef float lsst::meas::modelfit::Pixel |
Definition at line 42 of file adaptiveImportanceSampler.cc.
| using lsst::meas::modelfit::PyEpochFootprint = py::classh<EpochFootprint> |
Definition at line 43 of file unitTransformedLikelihood.cc.
Definition at line 40 of file adaptiveImportanceSampler.cc.
| using lsst::meas::modelfit::PyLikelihood = py::classh<Likelihood> |
Definition at line 38 of file likelihood.cc.
| using lsst::meas::modelfit::PyLocalUnitTransform = py::classh<LocalUnitTransform> |
Definition at line 37 of file unitSystem.cc.
| using lsst::meas::modelfit::PyModel = py::classh<Model> |
| using lsst::meas::modelfit::PyMultiModel = py::classh<MultiModel, Model> |
Definition at line 37 of file multiModel.cc.
| using lsst::meas::modelfit::PyPixelFitRegion = py::classh<PixelFitRegion> |
Definition at line 40 of file pixelFitRegion.cc.
| using lsst::meas::modelfit::PyPixelFitRegionControl = py::classh<PixelFitRegionControl> |
Definition at line 39 of file pixelFitRegion.cc.
| using lsst::meas::modelfit::PySampler = py::classh<Sampler> |
Definition at line 42 of file sampler.cc.
| using lsst::meas::modelfit::PySamplingObjective = py::classh<SamplingObjective> |
Definition at line 41 of file sampler.cc.
| using lsst::meas::modelfit::PyUnitSystem = py::classh<UnitSystem> |
Definition at line 36 of file unitSystem.cc.
Definition at line 45 of file unitTransformedLikelihood.cc.
Definition at line 40 of file unitTransformedLikelihood.cc.
| typedef double lsst::meas::modelfit::Scalar |
| typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> lsst::meas::modelfit::Vector |
| lsst::meas::modelfit::PYBIND11_MODULE | ( | _modelfitLib | , |
| mod | ) |
Definition at line 51 of file _modelfitLib.cc.
| void lsst::meas::modelfit::solveTrustRegion | ( | ndarray::Array< Scalar, 1, 1 > const & | x, |
| ndarray::Array< Scalar const, 2, 1 > const & | F, | ||
| ndarray::Array< Scalar const, 1, 1 > const & | g, | ||
| double | r, | ||
| double | tolerance ) |
Solve a symmetric quadratic matrix equation with a ball constraint.
This computes a near-exact solution to the "trust region subproblem" necessary in trust-region-based nonlinear optimizers:
\[ \min_x{\quad g^T x + \frac{1}{2}x^T F x}\quad\quad\quad \text{s.t.} ||x|| \le r \]
The tolerance parameter sets how close to \(r\) we require the norm of the solution to be when it lies on the constraint, as a fraction of \(r\) itself.
This implementation is based on the algorithm described in Section 4.3 of "Nonlinear Optimization" by Nocedal and Wright.
| void lsst::meas::modelfit::wrapAdaptiveImportanceSampler | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 45 of file adaptiveImportanceSampler.cc.
| void lsst::meas::modelfit::wrapCmodel | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 205 of file cmodel.cc.
| void lsst::meas::modelfit::wrapIntegrals | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 36 of file integrals.cc.
| void lsst::meas::modelfit::wrapLikelihood | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 40 of file likelihood.cc.
| void lsst::meas::modelfit::wrapMixture | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 143 of file mixture.cc.
| void lsst::meas::modelfit::wrapModel | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 43 of file model.cc.
| void lsst::meas::modelfit::wrapMultiModel | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 39 of file multiModel.cc.
| void lsst::meas::modelfit::wrapOptimizer | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 172 of file optimizer.cc.
| void lsst::meas::modelfit::wrapPixelFitRegion | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 42 of file pixelFitRegion.cc.
| void lsst::meas::modelfit::wrapPriors | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
| void lsst::meas::modelfit::wrapPsf | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
| void lsst::meas::modelfit::wrapSampler | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 44 of file sampler.cc.
| void lsst::meas::modelfit::wrapTruncatedGaussian | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 121 of file truncatedGaussian.cc.
| void lsst::meas::modelfit::wrapUnitSystem | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 39 of file unitSystem.cc.
| void lsst::meas::modelfit::wrapUnitTransformedLikelihood | ( | lsst::cpputils::python::WrapperCollection & | wrappers | ) |
Definition at line 48 of file unitTransformedLikelihood.cc.