LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
|
Classes | |
class | ComputeExposureSummaryStatsConfig |
class | ComputeExposureSummaryStatsTask |
Functions | |
maximum_nearest_psf_distance (image_mask, psf_cat, sampling=8, bad_mask_bits=["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"]) | |
compute_psf_image_deltas (image_mask, image_psf, sampling=96, ap_radius_pix=3.0, bad_mask_bits=["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"]) | |
compute_ap_corr_sigma_scaled_delta (image_mask, image_ap_corr_field, psfSigma, sampling=96, bad_mask_bits=["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"]) | |
compute_magnitude_limit (psfArea, skyBg, zeroPoint, readNoise, gain, snr) | |
lsst.pipe.tasks.computeExposureSummaryStats.compute_ap_corr_sigma_scaled_delta | ( | image_mask, | |
image_ap_corr_field, | |||
psfSigma, | |||
sampling = 96, | |||
bad_mask_bits = ["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"] ) |
Compute the delta between the maximum and minimum aperture correction values scaled (divided) by ``psfSigma`` for the given field representation, ``image_ap_corr_field`` evaluated on a grid of points lying in the unmasked region of the image. Parameters ---------- image_mask : `lsst.afw.image.Mask` The mask plane associated with the exposure. image_ap_corr_field : `lsst.afw.math.ChebyshevBoundedField` The ChebyshevBoundedField representation of the aperture correction of interest for the exposure. psfSigma : `float` The PSF model second-moments determinant radius (center of chip) in pixels. sampling : `int`, optional Sampling rate in each dimension to create the grid of points at which to evaluate ``image_psf``s trace radius value. The tradeoff is between adequate sampling versus speed. bad_mask_bits : `list` [`str`], optional Mask bits required to be absent for a pixel to be considered "unmasked". Returns ------- ap_corr_sigma_scaled_delta : `float` The delta between the maximum and minimum of the (multiplicative) aperture correction values scaled (divided) by ``psfSigma`` evaluated on the x,y-grid subsampled on the unmasked detector pixels by a factor of ``sampling``. If the aperture correction evaluates to NaN on any of the grid points, this is set to NaN.
Definition at line 845 of file computeExposureSummaryStats.py.
lsst.pipe.tasks.computeExposureSummaryStats.compute_magnitude_limit | ( | psfArea, | |
skyBg, | |||
zeroPoint, | |||
readNoise, | |||
gain, | |||
snr ) |
Compute the expected point-source magnitude limit at a given signal-to-noise ratio given the exposure-level metadata. Based on the signal-to-noise formula provided in SMTN-002 (see LSE-40 for more details on the calculation). SNR = C / sqrt( C/g + (B/g + sigma_inst**2) * neff ) where C is the counts from the source, B is counts from the (sky) background, sigma_inst is the instrumental (read) noise, neff is the effective size of the PSF, and g is the gain in e-/ADU. Note that input values of ``skyBg``, ``zeroPoint``, and ``readNoise`` should all consistently be in electrons or ADU. Parameters ---------- psfArea : `float` The effective area of the PSF [pix]. skyBg : `float` The sky background counts for the exposure [ADU or e-]. zeroPoint : `float` The zeropoint (includes exposure time) [ADU or e-]. readNoise : `float` The instrumental read noise for the exposure [ADU or e-]. gain : `float` The instrumental gain for the exposure [e-/ADU]. The gain should be 1.0 if the skyBg, zeroPoint, and readNoise are in e-. snr : `float` Signal-to-noise ratio at which magnitude limit is calculated. Returns ------- magnitude_limit : `float` The expected magnitude limit at the given signal to noise.
Definition at line 902 of file computeExposureSummaryStats.py.
lsst.pipe.tasks.computeExposureSummaryStats.compute_psf_image_deltas | ( | image_mask, | |
image_psf, | |||
sampling = 96, | |||
ap_radius_pix = 3.0, | |||
bad_mask_bits = ["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"] ) |
Compute the delta between the maximum and minimum model PSF trace radius values evaluated on a grid of points lying in the unmasked region of the image. Parameters ---------- image_mask : `lsst.afw.image.Mask` The mask plane associated with the exposure. image_psf : `lsst.afw.detection.Psf` The PSF model associated with the exposure. sampling : `int`, optional Sampling rate in each dimension to create the grid of points at which to evaluate ``image_psf``s trace radius value. The tradeoff is between adequate sampling versus speed. ap_radius_pix : `float`, optional Radius in pixels of the aperture on which to measure the flux of the PSF model. bad_mask_bits : `list` [`str`], optional Mask bits required to be absent for a pixel to be considered "unmasked". Returns ------- psf_trace_radius_delta, psf_ap_flux_delta : `float` The delta (in pixels) between the maximum and minimum model PSF trace radius values and the PSF aperture fluxes (with aperture radius of max(2, 3*psfSigma)) evaluated on the x,y-grid subsampled on the unmasked detector pixels by a factor of ``sampling``. If both the model PSF trace radius value and aperture flux value on the grid evaluate to NaN, then NaNs are returned immediately.
Definition at line 777 of file computeExposureSummaryStats.py.
lsst.pipe.tasks.computeExposureSummaryStats.maximum_nearest_psf_distance | ( | image_mask, | |
psf_cat, | |||
sampling = 8, | |||
bad_mask_bits = ["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"] ) |
Compute the maximum distance of an unmasked pixel to its nearest PSF. Parameters ---------- image_mask : `lsst.afw.image.Mask` The mask plane associated with the exposure. psf_cat : `lsst.afw.table.SourceCatalog` or `astropy.table.Table` Catalog containing only the stars used in the PSF modeling. sampling : `int` Sampling rate in each dimension to create the grid of points on which to evaluate the distance to the nearest PSF star. The tradeoff is between adequate sampling versus speed. bad_mask_bits : `list` [`str`] Mask bits required to be absent for a pixel to be considered "unmasked". Returns ------- max_dist_to_nearest_psf : `float` The maximum distance (in pixels) of an unmasked pixel to its nearest PSF model star.
Definition at line 730 of file computeExposureSummaryStats.py.