|
LSST Applications g00d0e8bbd7+8c5ae1fdc5,g013ef56533+603670b062,g083dd6704c+2e189452a7,g199a45376c+0ba108daf9,g1c5cce2383+bc9f6103a4,g1fd858c14a+cd69ed4fc1,g210f2d0738+c4742f2e9e,g262e1987ae+612fa42d85,g29ae962dfc+83d129e820,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+5eaa884f2a,g47891489e3+e32160a944,g53246c7159+8c5ae1fdc5,g5b326b94bb+dcc56af22d,g64539dfbff+c4742f2e9e,g67b6fd64d1+e32160a944,g74acd417e5+c122e1277d,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g88cb488625+47d24e4084,g89139ef638+e32160a944,g8d7436a09f+d14b4ff40a,g8ea07a8fe4+b212507b11,g90f42f885a+e1755607f3,g97be763408+34be90ab8c,g98df359435+ec1fa61bf1,ga2180abaac+8c5ae1fdc5,ga9e74d7ce9+43ac651df0,gbf99507273+8c5ae1fdc5,gc2a301910b+c4742f2e9e,gca7fc764a6+e32160a944,gd7ef33dd92+e32160a944,gdab6d2f7ff+c122e1277d,gdb1e2cdc75+1b18322db8,ge410e46f29+e32160a944,ge41e95a9f2+c4742f2e9e,geaed405ab2+0d91c11c6d,w.2025.44
LSST Data Management Base Package
|
Classes | |
| class | ComputeExposureSummaryStatsConfig |
| class | ComputeExposureSummaryStatsTask |
Functions | |
| maximum_nearest_psf_distance (image_mask, psf_cat, sampling=8, bad_mask_bits=["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"]) | |
| compute_psf_image_deltas (image_mask, image_psf, sampling=96, ap_radius_pix=3.0, bad_mask_bits=["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"]) | |
| compute_ap_corr_sigma_scaled_delta (image_mask, image_ap_corr_field, psfSigma, sampling=96, bad_mask_bits=["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"]) | |
| compute_magnitude_limit (psfArea, skyBg, zeroPoint, readNoise, gain, snr) | |
| lsst.pipe.tasks.computeExposureSummaryStats.compute_ap_corr_sigma_scaled_delta | ( | image_mask, | |
| image_ap_corr_field, | |||
| psfSigma, | |||
| sampling = 96, | |||
| bad_mask_bits = ["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"] ) |
Compute the delta between the maximum and minimum aperture correction
values scaled (divided) by ``psfSigma`` for the given field representation,
``image_ap_corr_field`` evaluated on a grid of points lying in the
unmasked region of the image.
Parameters
----------
image_mask : `lsst.afw.image.Mask`
The mask plane associated with the exposure.
image_ap_corr_field : `lsst.afw.math.ChebyshevBoundedField`
The ChebyshevBoundedField representation of the aperture correction
of interest for the exposure.
psfSigma : `float`
The PSF model second-moments determinant radius (center of chip)
in pixels.
sampling : `int`, optional
Sampling rate in each dimension to create the grid of points at which
to evaluate ``image_psf``s trace radius value. The tradeoff is between
adequate sampling versus speed.
bad_mask_bits : `list` [`str`], optional
Mask bits required to be absent for a pixel to be considered
"unmasked".
Returns
-------
ap_corr_sigma_scaled_delta : `float`
The delta between the maximum and minimum of the (multiplicative)
aperture correction values scaled (divided) by ``psfSigma`` evaluated
on the x,y-grid subsampled on the unmasked detector pixels by a factor
of ``sampling``. If the aperture correction evaluates to NaN on any
of the grid points, this is set to NaN.
Definition at line 843 of file computeExposureSummaryStats.py.
| lsst.pipe.tasks.computeExposureSummaryStats.compute_magnitude_limit | ( | psfArea, | |
| skyBg, | |||
| zeroPoint, | |||
| readNoise, | |||
| gain, | |||
| snr ) |
Compute the expected point-source magnitude limit at a given
signal-to-noise ratio given the exposure-level metadata. Based on
the signal-to-noise formula provided in SMTN-002 (see LSE-40 for
more details on the calculation).
SNR = C / sqrt( C/g + (B/g + sigma_inst**2) * neff )
where C is the counts from the source, B is counts from the (sky)
background, sigma_inst is the instrumental (read) noise, neff is
the effective size of the PSF, and g is the gain in e-/ADU. Note
that input values of ``skyBg``, ``zeroPoint``, and ``readNoise``
should all consistently be in electrons or ADU.
Parameters
----------
psfArea : `float`
The effective area of the PSF [pix].
skyBg : `float`
The sky background counts for the exposure [ADU or e-].
zeroPoint : `float`
The zeropoint (includes exposure time) [ADU or e-].
readNoise : `float`
The instrumental read noise for the exposure [ADU or e-].
gain : `float`
The instrumental gain for the exposure [e-/ADU]. The gain should
be 1.0 if the skyBg, zeroPoint, and readNoise are in e-.
snr : `float`
Signal-to-noise ratio at which magnitude limit is calculated.
Returns
-------
magnitude_limit : `float`
The expected magnitude limit at the given signal to noise.
Definition at line 900 of file computeExposureSummaryStats.py.
| lsst.pipe.tasks.computeExposureSummaryStats.compute_psf_image_deltas | ( | image_mask, | |
| image_psf, | |||
| sampling = 96, | |||
| ap_radius_pix = 3.0, | |||
| bad_mask_bits = ["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"] ) |
Compute the delta between the maximum and minimum model PSF trace radius
values evaluated on a grid of points lying in the unmasked region of the
image.
Parameters
----------
image_mask : `lsst.afw.image.Mask`
The mask plane associated with the exposure.
image_psf : `lsst.afw.detection.Psf`
The PSF model associated with the exposure.
sampling : `int`, optional
Sampling rate in each dimension to create the grid of points at which
to evaluate ``image_psf``s trace radius value. The tradeoff is between
adequate sampling versus speed.
ap_radius_pix : `float`, optional
Radius in pixels of the aperture on which to measure the flux of the
PSF model.
bad_mask_bits : `list` [`str`], optional
Mask bits required to be absent for a pixel to be considered
"unmasked".
Returns
-------
psf_trace_radius_delta, psf_ap_flux_delta : `float`
The delta (in pixels) between the maximum and minimum model PSF trace
radius values and the PSF aperture fluxes (with aperture radius of
max(2, 3*psfSigma)) evaluated on the x,y-grid subsampled on the
unmasked detector pixels by a factor of ``sampling``. If both the
model PSF trace radius value and aperture flux value on the grid
evaluate to NaN, then NaNs are returned immediately.
Definition at line 775 of file computeExposureSummaryStats.py.
| lsst.pipe.tasks.computeExposureSummaryStats.maximum_nearest_psf_distance | ( | image_mask, | |
| psf_cat, | |||
| sampling = 8, | |||
| bad_mask_bits = ["BAD", "CR", "INTRP", "SAT", "SUSPECT", "NO_DATA", "EDGE"] ) |
Compute the maximum distance of an unmasked pixel to its nearest PSF.
Parameters
----------
image_mask : `lsst.afw.image.Mask`
The mask plane associated with the exposure.
psf_cat : `lsst.afw.table.SourceCatalog` or `astropy.table.Table`
Catalog containing only the stars used in the PSF modeling.
sampling : `int`
Sampling rate in each dimension to create the grid of points on which
to evaluate the distance to the nearest PSF star. The tradeoff is
between adequate sampling versus speed.
bad_mask_bits : `list` [`str`]
Mask bits required to be absent for a pixel to be considered
"unmasked".
Returns
-------
max_dist_to_nearest_psf : `float`
The maximum distance (in pixels) of an unmasked pixel to its nearest
PSF model star.
Definition at line 728 of file computeExposureSummaryStats.py.