LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Classes | Variables
lsst.pipe.tasks.hips Namespace Reference

Classes

class  HighResolutionHipsConnections
 

Variables

int shift_order = 512 pixels on a side.
 
int https ://www.ivoa.net/documents/HiPS/20170519/REC-HIPS-1.0-20170519.pdf
 
 prefix : `str`
 
 pixels : `Iterable` [ `int` ]
 
 coadd_exposure_handles : `list` [`lsst.daf.butler.DeferredDatasetHandle`]
 
 outputs : `lsst.pipe.base.Struct`
 
 argv : `Sequence` [ `str` ]
 
 parser : `argparse.ArgumentParser`
 
 pipeline_graph : `lsst.pipe.base.PipelineGraph`
 
 butler : `lsst.daf.butler.Butler`
 
 input_collections : `str` or `Iterable` [ `str` ], optional
 
 output_run : `str`, optional
 
 constraint_order : `int`
 
 constraint_ranges : `lsst.sphgeom.RangeSet`
 
 where : `str`, optional
 
 data_bands : `set` [`str`]
 
 bands : `list` [`str`]
 
 max_order : `int`
 
 hips_exposure_handle_dict : `dict` {`int`: `lsst.daf.butler.DeferredDatasetHandle`}
 
 do_color : `bool`, optional
 
 hips_base_path : `lsst.resources.ResourcePath`
 
 order : `int`
 
 pixel : `int`
 
 image : `lsst.afw.image.Image`
 
 png_mapping : `astropy.visualization.lupton_rgb.AsinhMapping`
 
 image_red : `lsst.afw.image.Image`
 
 image_green : `lsst.afw.image.Image`
 
 image_blue : `lsst.afw.image.Image`
 
 exposure : `lsst.afw.image.Exposure`
 
 band : `str`
 
 multiband : `bool`
 
 properties_config : `lsst.pipe.tasks.hips.HipsPropertiesConfig`
 
 area : `float`
 
 initial_ra : `float`
 
 initial_dec : `float`
 
 initial_fov : `float`
 
file fh handle (blah)
 
 name : `str`
 
 value : `str`
 
 min_uniq_order : `int`, optional
 
 allsky_order : `int`
 
 dir_number : `int`
 

Detailed Description

Tasks for making and manipulating HIPS images.

Variable Documentation

◆ allsky_order

lsst.pipe.tasks.hips.allsky_order : `int`

Definition at line 1531 of file hips.py.

◆ area

lsst.pipe.tasks.hips.area : `float`

Definition at line 1335 of file hips.py.

◆ argv

lsst.pipe.tasks.hips.argv : `Sequence` [ `str` ]
self.log.info("Generating HPX images for %d pixels at order %d", len(pixels), self.config.hips_order)

npix = 2**self.config.shift_order
bbox_hpx = geom.Box2I(corner=geom.Point2I(0, 0),
                      dimensions=geom.Extent2I(npix, npix))

# For each healpix pixel we will create an empty exposure with the
# correct HPX WCS. We furthermore create a dict to hold each of
# the warps that will go into each HPX exposure.
exp_hpx_dict = {}
warp_dict = {}
for pixel in pixels:
    wcs_hpx = afwGeom.makeHpxWcs(self.config.hips_order, pixel, shift_order=self.config.shift_order)
    exp_hpx = afwImage.ExposureF(bbox_hpx, wcs_hpx)
    exp_hpx_dict[pixel] = exp_hpx
    warp_dict[pixel] = []

first_handle = True
# Loop over input coadd exposures to minimize i/o (this speeds things
# up by ~8x to batch together pixels that overlap a given coadd).
for handle in coadd_exposure_handles:
    coadd_exp = handle.get()

    # For each pixel, warp the coadd to the HPX WCS for the pixel.
    for pixel in pixels:
        warped = self.warper.warpExposure(exp_hpx_dict[pixel].getWcs(), coadd_exp, maxBBox=bbox_hpx)

        exp = afwImage.ExposureF(exp_hpx_dict[pixel].getBBox(), exp_hpx_dict[pixel].getWcs())
        exp.maskedImage.set(np.nan, afwImage.Mask.getPlaneBitMask("NO_DATA"), np.nan)

        if first_handle:
            # Make sure the mask planes, filter, and photocalib of the output
            # exposure match the (first) input exposure.
            exp_hpx_dict[pixel].mask.conformMaskPlanes(coadd_exp.mask.getMaskPlaneDict())
            exp_hpx_dict[pixel].setFilter(coadd_exp.getFilter())
            exp_hpx_dict[pixel].setPhotoCalib(coadd_exp.getPhotoCalib())

        if warped.getBBox().getArea() == 0 or not np.any(np.isfinite(warped.image.array)):
            # There is no overlap, skip.
            self.log.debug(
                "No overlap between output HPX %d and input exposure %s",
                pixel,
                handle.dataId
            )
            continue

        exp.maskedImage.assign(warped.maskedImage, warped.getBBox())
        warp_dict[pixel].append(exp.maskedImage)

    first_handle = False

stats_flags = afwMath.stringToStatisticsProperty("MEAN")
stats_ctrl = afwMath.StatisticsControl()
stats_ctrl.setNanSafe(True)
stats_ctrl.setWeighted(True)
stats_ctrl.setCalcErrorFromInputVariance(True)

# Loop over pixels and combine the warps for each pixel.
# The combination is done with a simple mean for pixels that
# overlap in neighboring patches.
for pixel in pixels:
    exp_hpx_dict[pixel].maskedImage.set(np.nan, afwImage.Mask.getPlaneBitMask("NO_DATA"), np.nan)

    if not warp_dict[pixel]:
        # Nothing in this pixel
        self.log.debug("No data in HPX pixel %d", pixel)
        # Remove the pixel from the output, no need to persist an
        # empty exposure.
        exp_hpx_dict.pop(pixel)
        continue

    exp_hpx_dict[pixel].maskedImage = afwMath.statisticsStack(
        warp_dict[pixel],
        stats_flags,
        stats_ctrl,
        [1.0]*len(warp_dict[pixel]),
        clipped=0,
        maskMap=[]
    )

return pipeBase.Struct(hips_exposures=exp_hpx_dict)

@classmethod
def build_quantum_graph_cli(cls, argv):

Definition at line 325 of file hips.py.

◆ band

lsst.pipe.tasks.hips.band : `str`

Definition at line 1254 of file hips.py.

◆ bands

lsst.pipe.tasks.hips.bands : `list` [`str`]
if len(data_bands) != 1:
    raise RuntimeError("GenerateHipsTask can only use data from a single band.")

return list(data_bands)

@timeMethod
def run(self, bands, max_order, hips_exposure_handle_dict, do_color=False):

Definition at line 899 of file hips.py.

◆ butler

lsst.pipe.tasks.hips.butler : `lsst.daf.butler.Butler`

Definition at line 508 of file hips.py.

◆ coadd_exposure_handles

lsst.pipe.tasks.hips.coadd_exposure_handles : `list` [`lsst.daf.butler.DeferredDatasetHandle`]

Definition at line 227 of file hips.py.

◆ constraint_order

lsst.pipe.tasks.hips.constraint_order : `int`

Definition at line 516 of file hips.py.

◆ constraint_ranges

lsst.pipe.tasks.hips.constraint_ranges : `lsst.sphgeom.RangeSet`

Definition at line 522 of file hips.py.

◆ data_bands

lsst.pipe.tasks.hips.data_bands : `set` [`str`]
def __init__(
    self,
    pipeline_graph,
    butler,
    *,
    input_collections=None,
    output_run=None,
    constraint_order,
    constraint_ranges,
    where="",
):
    super().__init__(pipeline_graph, butler, input_collections=input_collections, output_run=output_run)
    self.constraint_order = constraint_order
    self.constraint_ranges = constraint_ranges
    self.where = where

def process_subgraph(self, subgraph):
    # Docstring inherited.
    (task_node,) = subgraph.tasks.values()

    # Since we know this is the only task in the pipeline, we know there
    # is only one overall input and one regular output.
    (input_dataset_type_node,) = subgraph.inputs_of(task_node.label).values()
    assert input_dataset_type_node is not None, "PipelineGraph should be resolved by base class."
    (output_edge,) = task_node.outputs.values()
    output_dataset_type_node = subgraph.dataset_types[output_edge.parent_dataset_type_name]
    (hpx_output_dimension,) = (
        self.butler.dimensions.skypix_dimensions[d]
        for d in output_dataset_type_node.dimensions.skypix
    )
    constraint_hpx_pixelization = (
        self.butler.dimensions.skypix_dimensions[f"healpix{self.constraint_order}"].pixelization
    )
    common_skypix_name = self.butler.dimensions.commonSkyPix.name
    common_skypix_pixelization = self.butler.dimensions.commonSkyPix.pixelization

    # We will need all the pixels at the quantum resolution as well.
    # '4' appears here frequently because it's the number of pixels at
    # level N in a single pixel at level N.
    (hpx_dimension,) = (
        self.butler.dimensions.skypix_dimensions[d] for d in task_node.dimensions.names if d != "band"
    )
    hpx_pixelization = hpx_dimension.pixelization
    if hpx_pixelization.level < self.constraint_order:
        raise ValueError(f"Quantum order {hpx_pixelization.level} must be < {self.constraint_order}")
    hpx_ranges = self.constraint_ranges.scaled(4**(hpx_pixelization.level - self.constraint_order))

    # We can be generous in looking for pixels here, because we constrain
    # by actual patch regions below.
    common_skypix_ranges = RangeSet()
    for begin, end in self.constraint_ranges:
        for hpx_index in range(begin, end):
            constraint_hpx_region = constraint_hpx_pixelization.pixel(hpx_index)
            common_skypix_ranges |= common_skypix_pixelization.envelope(constraint_hpx_region)

    # To keep the query from getting out of hand (and breaking) we simplify
    # until we have fewer than 100 ranges which seems to work fine.
    for simp in range(1, 10):
        if len(common_skypix_ranges) < 100:
            break
        common_skypix_ranges.simplify(simp)

    # Use that RangeSet to assemble a WHERE constraint expression.  This
    # could definitely get too big if the "constraint healpix" order is too
    # fine.
    where_terms = []
    bind = {}
    for n, (begin, end) in enumerate(common_skypix_ranges):
        stop = end - 1  # registry range syntax is inclusive
        if begin == stop:
            where_terms.append(f"{common_skypix_name} = cpx{n}")
            bind[f"cpx{n}"] = begin
        else:
            where_terms.append(f"({common_skypix_name} >= cpx{n}a AND {common_skypix_name} <= cpx{n}b)")
            bind[f"cpx{n}a"] = begin
            bind[f"cpx{n}b"] = stop
    where = " OR ".join(where_terms)
    if self.where:
        where = f"({self.where}) AND ({where})"
    # Query for input datasets with this constraint, and ask for expanded
    # data IDs because we want regions.  Immediately group this by patch so
    # we don't do later geometric stuff n_bands more times than we need to.
    input_refs = self.butler.registry.queryDatasets(
        input_dataset_type_node.dataset_type,
        where=where,
        findFirst=True,
        collections=self.input_collections,
        bind=bind
    ).expanded()
    inputs_by_patch = defaultdict(set)
    patch_dimensions = self.butler.dimensions.conform(["patch"])
    for input_ref in input_refs:
        dataset_key = DatasetKey(input_ref.datasetType.name, input_ref.dataId.required_values)
        self.existing_datasets.inputs[dataset_key] = input_ref
        inputs_by_patch[input_ref.dataId.subset(patch_dimensions)].add(dataset_key)
    if not inputs_by_patch:
        message_body = "\n".join(input_refs.explain_no_results())
        raise RuntimeError(f"No inputs found:\n{message_body}")

    # Iterate over patches and compute the set of output healpix pixels
    # that overlap each one.  Use that to associate inputs with output
    # pixels, but only for the output pixels we've already identified.
    inputs_by_hpx = defaultdict(set)
    for patch_data_id, input_keys_for_patch in inputs_by_patch.items():
        patch_hpx_ranges = hpx_pixelization.envelope(patch_data_id.region)
        for begin, end in patch_hpx_ranges & hpx_ranges:
            for hpx_index in range(begin, end):
                inputs_by_hpx[hpx_index].update(input_keys_for_patch)

    # Iterate over the dict we just created and create preliminary quanta.
    skeleton = QuantumGraphSkeleton([task_node.label])
    for hpx_index, input_keys_for_hpx_index in inputs_by_hpx.items():
        # Group inputs by band.
        input_keys_by_band = defaultdict(list)
        for input_key in input_keys_for_hpx_index:
            input_ref = self.existing_datasets.inputs[input_key]
            input_keys_by_band[input_ref.dataId["band"]].append(input_key)
        # Iterate over bands to make quanta.
        for band, input_keys_for_band in input_keys_by_band.items():
            data_id = self.butler.registry.expandDataId({hpx_dimension.name: hpx_index, "band": band})
            quantum_key = skeleton.add_quantum_node(task_node.label, data_id)
            # Add inputs to the skelton
            skeleton.add_input_edges(quantum_key, input_keys_for_band)
            # Add the regular outputs.
            hpx_pixel_ranges = RangeSet(hpx_index)
            hpx_output_ranges = hpx_pixel_ranges.scaled(
                4**(task_node.config.hips_order - hpx_pixelization.level)
            )
            for begin, end in hpx_output_ranges:
                for hpx_output_index in range(begin, end):
                    dataset_key = skeleton.add_dataset_node(
                        output_dataset_type_node.name,
                        self.butler.registry.expandDataId(
                            {hpx_output_dimension: hpx_output_index, "band": band}
                        ),
                    )
                    skeleton.add_output_edge(quantum_key, dataset_key)
            # Add auxiliary outputs (log, metadata).
            for write_edge in task_node.iter_all_outputs():
                if write_edge.connection_name == output_edge.connection_name:
                    continue
                dataset_key = skeleton.add_dataset_node(write_edge.parent_dataset_type_name, data_id)
                skeleton.add_output_edge(quantum_key, dataset_key)
    return skeleton


class HipsPropertiesSpectralTerm(pexConfig.Config):
lambda_min = pexConfig.Field(
    doc="Minimum wavelength (nm)",
    dtype=float,
)
lambda_max = pexConfig.Field(
    doc="Maximum wavelength (nm)",
    dtype=float,
)


class HipsPropertiesConfig(pexConfig.Config):
creator_did_template = pexConfig.Field(
    doc=("Unique identifier of the HiPS - Format: IVOID. "
         "Use ``{band}`` to substitute the band name."),
    dtype=str,
    optional=False,
)
obs_collection = pexConfig.Field(
    doc="Short name of original data set - Format: one word",
    dtype=str,
    optional=True,
)
obs_description_template = pexConfig.Field(
    doc=("Data set description - Format: free text, longer free text "
         "description of the dataset.  Use ``{band}`` to substitute "
         "the band name."),
    dtype=str,
)
prov_progenitor = pexConfig.ListField(
    doc="Provenance of the original data - Format: free text",
    dtype=str,
    default=[],
)
obs_title_template = pexConfig.Field(
    doc=("Data set title format: free text, but should be short. "
         "Use ``{band}`` to substitute the band name."),
    dtype=str,
    optional=False,
)
spectral_ranges = pexConfig.ConfigDictField(
    doc=("Mapping from band to lambda_min, lamba_max (nm).  May be approximate."),
    keytype=str,
    itemtype=HipsPropertiesSpectralTerm,
    default={},
)
initial_ra = pexConfig.Field(
    doc="Initial RA (deg) (default for HiPS viewer).  If not set will use a point in MOC.",
    dtype=float,
    optional=True,
)
initial_dec = pexConfig.Field(
    doc="Initial Declination (deg) (default for HiPS viewer).  If not set will use a point in MOC.",
    dtype=float,
    optional=True,
)
initial_fov = pexConfig.Field(
    doc="Initial field-of-view (deg).  If not set will use ~1 healpix tile.",
    dtype=float,
    optional=True,
)
obs_ack = pexConfig.Field(
    doc="Observation acknowledgements (free text).",
    dtype=str,
    optional=True,
)
t_min = pexConfig.Field(
    doc="Time (MJD) of earliest observation included in HiPS",
    dtype=float,
    optional=True,
)
t_max = pexConfig.Field(
    doc="Time (MJD) of latest observation included in HiPS",
    dtype=float,
    optional=True,
)

def validate(self):
    super().validate()

    if self.obs_collection is not None:
        if re.search(r"\s", self.obs_collection):
            raise ValueError("obs_collection cannot contain any space characters.")

def setDefaults(self):
    # Values here taken from
    # https://github.com/lsst-dm/dax_obscore/blob/44ac15029136e2ec15/configs/dp02.yaml#L46
    u_term = HipsPropertiesSpectralTerm()
    u_term.lambda_min = 330.
    u_term.lambda_max = 400.
    self.spectral_ranges["u"] = u_term
    g_term = HipsPropertiesSpectralTerm()
    g_term.lambda_min = 402.
    g_term.lambda_max = 552.
    self.spectral_ranges["g"] = g_term
    r_term = HipsPropertiesSpectralTerm()
    r_term.lambda_min = 552.
    r_term.lambda_max = 691.
    self.spectral_ranges["r"] = r_term
    i_term = HipsPropertiesSpectralTerm()
    i_term.lambda_min = 691.
    i_term.lambda_max = 818.
    self.spectral_ranges["i"] = i_term
    z_term = HipsPropertiesSpectralTerm()
    z_term.lambda_min = 818.
    z_term.lambda_max = 922.
    self.spectral_ranges["z"] = z_term
    y_term = HipsPropertiesSpectralTerm()
    y_term.lambda_min = 970.
    y_term.lambda_max = 1060.
    self.spectral_ranges["y"] = y_term


class GenerateHipsConnections(pipeBase.PipelineTaskConnections,
                          dimensions=("instrument", "band"),
                          defaultTemplates={"coaddName": "deep"}):
hips_exposure_handles = pipeBase.connectionTypes.Input(
    doc="HiPS-compatible HPX images.",
    name="{coaddName}Coadd_hpx",
    storageClass="ExposureF",
    dimensions=("healpix11", "band"),
    multiple=True,
    deferLoad=True,
)


class GenerateHipsConfig(pipeBase.PipelineTaskConfig,
                     pipelineConnections=GenerateHipsConnections):
# WARNING: In general PipelineTasks are not allowed to do any outputs
# outside of the butler.  This task has been given (temporary)
# Special Dispensation because of the nature of HiPS outputs until
# a more controlled solution can be found.
hips_base_uri = pexConfig.Field(
    doc="URI to HiPS base for output.",
    dtype=str,
    optional=False,
)
min_order = pexConfig.Field(
    doc="Minimum healpix order for HiPS tree.",
    dtype=int,
    default=3,
)
properties = pexConfig.ConfigField(
    dtype=HipsPropertiesConfig,
    doc="Configuration for properties file.",
)
allsky_tilesize = pexConfig.Field(
    dtype=int,
    doc="Allsky tile size; must be power of 2. HiPS standard recommends 64x64 tiles.",
    default=64,
    check=_is_power_of_two,
)
png_gray_asinh_minimum = pexConfig.Field(
    doc="AsinhMapping intensity to be mapped to black for grayscale png scaling.",
    dtype=float,
    default=0.0,
)
png_gray_asinh_stretch = pexConfig.Field(
    doc="AsinhMapping linear stretch for grayscale png scaling.",
    dtype=float,
    default=2.0,
)
png_gray_asinh_softening = pexConfig.Field(
    doc="AsinhMapping softening parameter (Q) for grayscale png scaling.",
    dtype=float,
    default=8.0,
)


class GenerateHipsTask(pipeBase.PipelineTask):
ConfigClass = GenerateHipsConfig
_DefaultName = "generateHips"
color_task = False

@timeMethod
def runQuantum(self, butlerQC, inputRefs, outputRefs):
    inputs = butlerQC.get(inputRefs)

    dims = inputRefs.hips_exposure_handles[0].dataId.dimensions.names
    order = None
    for dim in dims:
        if "healpix" in dim:
            order = int(dim.split("healpix")[1])
            healpix_dim = dim
            break
    else:
        raise RuntimeError("Could not determine healpix order for input exposures.")

    hips_exposure_handle_dict = {
        (hips_exposure_handle.dataId[healpix_dim],
         hips_exposure_handle.dataId["band"]): hips_exposure_handle
        for hips_exposure_handle in inputs["hips_exposure_handles"]
    }

    data_bands = {hips_exposure_handle.dataId["band"]
                  for hips_exposure_handle in inputs["hips_exposure_handles"]}
    bands = self._check_data_bands(data_bands)

    self.run(
        bands=bands,
        max_order=order,
        hips_exposure_handle_dict=hips_exposure_handle_dict,
        do_color=self.color_task,
    )

def _check_data_bands(self, data_bands):
return (pixel//10000)*10000


class GenerateColorHipsConnections(pipeBase.PipelineTaskConnections,
                           dimensions=("instrument", ),
                           defaultTemplates={"coaddName": "deep"}):
hips_exposure_handles = pipeBase.connectionTypes.Input(
doc="HiPS-compatible HPX images.",
name="{coaddName}Coadd_hpx",
storageClass="ExposureF",
dimensions=("healpix11", "band"),
multiple=True,
deferLoad=True,
)


class GenerateColorHipsConfig(GenerateHipsConfig,
                      pipelineConnections=GenerateColorHipsConnections):
blue_channel_band = pexConfig.Field(
doc="Band to use for blue channel of color pngs.",
dtype=str,
default="g",
)
green_channel_band = pexConfig.Field(
doc="Band to use for green channel of color pngs.",
dtype=str,
default="r",
)
red_channel_band = pexConfig.Field(
doc="Band to use for red channel of color pngs.",
dtype=str,
default="i",
)
png_color_asinh_minimum = pexConfig.Field(
doc="AsinhMapping intensity to be mapped to black for color png scaling.",
dtype=float,
default=0.0,
)
png_color_asinh_stretch = pexConfig.Field(
doc="AsinhMapping linear stretch for color png scaling.",
dtype=float,
default=5.0,
)
png_color_asinh_softening = pexConfig.Field(
doc="AsinhMapping softening parameter (Q) for color png scaling.",
dtype=float,
default=8.0,
)


class GenerateColorHipsTask(GenerateHipsTask):
ConfigClass = GenerateColorHipsConfig
_DefaultName = "generateColorHips"
color_task = True

def _check_data_bands(self, data_bands):

Definition at line 894 of file hips.py.

◆ dir_number

lsst.pipe.tasks.hips.dir_number : `int`

Definition at line 1594 of file hips.py.

◆ do_color

lsst.pipe.tasks.hips.do_color : `bool`, optional

Definition at line 924 of file hips.py.

◆ exposure

lsst.pipe.tasks.hips.exposure : `lsst.afw.image.Exposure`

Definition at line 1250 of file hips.py.

◆ fh

file lsst.pipe.tasks.hips.fh handle (blah)
# WARNING: In general PipelineTasks are not allowed to do any outputs
# outside of the butler.  This task has been given (temporary)
# Special Dispensation because of the nature of HiPS outputs until
# a more controlled solution can be found.
def _write_property(fh, name, value):

Definition at line 1353 of file hips.py.

◆ hips_base_path

lsst.pipe.tasks.hips.hips_base_path : `lsst.resources.ResourcePath`
min_order = self.config.min_order

if not do_color:
    png_grayscale_mapping = AsinhMapping(
        self.config.png_gray_asinh_minimum,
        self.config.png_gray_asinh_stretch,
        Q=self.config.png_gray_asinh_softening,
    )
else:
    png_color_mapping = AsinhMapping(
        self.config.png_color_asinh_minimum,
        self.config.png_color_asinh_stretch,
        Q=self.config.png_color_asinh_softening,
    )

    bcb = self.config.blue_channel_band
    gcb = self.config.green_channel_band
    rcb = self.config.red_channel_band
    colorstr = f"{bcb}{gcb}{rcb}"

# The base path is based on the hips_base_uri.
hips_base_path = ResourcePath(self.config.hips_base_uri, forceDirectory=True)

# We need to unique-ify the pixels because they show up for multiple bands.
# The output of this is a sorted array.
pixels = np.unique(np.array([pixel for pixel, _ in hips_exposure_handle_dict.keys()]))

# Add a "gutter" pixel at the end.  Start with 0 which maps to 0 always.
pixels = np.append(pixels, [0])

# Convert the pixels to each order that will be generated.
pixels_shifted = {}
pixels_shifted[max_order] = pixels
for order in range(max_order - 1, min_order - 1, -1):
    pixels_shifted[order] = np.right_shift(pixels_shifted[order + 1], 2)

# And set the gutter to an illegal pixel value.
for order in range(min_order, max_order + 1):
    pixels_shifted[order][-1] = -1

# Read in the first pixel for determining image properties.
exp0 = list(hips_exposure_handle_dict.values())[0].get()
bbox = exp0.getBBox()
npix = bbox.getWidth()
shift_order = int(np.round(np.log2(npix)))

# Create blank exposures for each level, including the highest order.
# We also make sure we create blank exposures for any bands used in the color
# PNGs, even if they aren't available.
exposures = {}
for band in bands:
    for order in range(min_order, max_order + 1):
        exp = exp0.Factory(bbox=bbox)
        exp.image.array[:, :] = np.nan
        exposures[(band, order)] = exp

# Loop over all pixels, avoiding the gutter.
for pixel_counter, pixel in enumerate(pixels[:-1]):
    self.log.debug("Working on high resolution pixel %d", pixel)
    for band in bands:
        # Read all the exposures here for the highest order.
        # There will always be at least one band with a HiPS image available
        # at the highest order. However, for color images it is possible that
        # not all bands have coverage so we require this check.
        if (pixel, band) in hips_exposure_handle_dict:
            exposures[(band, max_order)] = hips_exposure_handle_dict[(pixel, band)].get()

    # Go up the HiPS tree.
    # We only write pixels and rebin to fill the parent pixel when we are
    # done with a current pixel, which is determined if the next pixel
    # has a different pixel number.
    for order in range(max_order, min_order - 1, -1):
        if pixels_shifted[order][pixel_counter + 1] == pixels_shifted[order][pixel_counter]:
            # This order is not done, and so none of the other orders will be.
            break

        # We can now write out the images for each band.
        # Note this will always trigger at the max order where each pixel is unique.
        if not do_color:
            for band in bands:
                self._write_hips_image(
                    hips_base_path.join(f"band_{band}", forceDirectory=True),
                    order,
                    pixels_shifted[order][pixel_counter],
                    exposures[(band, order)].image,
                    png_grayscale_mapping,
                    shift_order=shift_order,
                )
        else:
            # Make a color png.
            self._write_hips_color_png(
                hips_base_path.join(f"color_{colorstr}", forceDirectory=True),
                order,
                pixels_shifted[order][pixel_counter],
                exposures[(self.config.red_channel_band, order)].image,
                exposures[(self.config.green_channel_band, order)].image,
                exposures[(self.config.blue_channel_band, order)].image,
                png_color_mapping,
            )

        log_level = self.log.INFO if order == (max_order - 3) else self.log.DEBUG
        self.log.log(
            log_level,
            "Completed HiPS generation for %s, order %d, pixel %d (%d/%d)",
            ",".join(bands),
            order,
            pixels_shifted[order][pixel_counter],
            pixel_counter,
            len(pixels) - 1,
        )

        # When we are at the top of the tree, erase top level images and continue.
        if order == min_order:
            for band in bands:
                exposures[(band, order)].image.array[:, :] = np.nan
            continue

        # Now average the images for each band.
        for band in bands:
            arr = exposures[(band, order)].image.array.reshape(npix//2, 2, npix//2, 2)
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                binned_image_arr = np.nanmean(arr, axis=(1, 3))

            # Fill the next level up.  We figure out which of the four
            # sub-pixels the current pixel occupies.
            sub_index = (pixels_shifted[order][pixel_counter]
                         - np.left_shift(pixels_shifted[order - 1][pixel_counter], 2))

            # Fill exposure at the next level up.
            exp = exposures[(band, order - 1)]

            # Fill the correct subregion.
            if sub_index == 0:
                exp.image.array[npix//2:, 0: npix//2] = binned_image_arr
            elif sub_index == 1:
                exp.image.array[0: npix//2, 0: npix//2] = binned_image_arr
            elif sub_index == 2:
                exp.image.array[npix//2:, npix//2:] = binned_image_arr
            elif sub_index == 3:
                exp.image.array[0: npix//2, npix//2:] = binned_image_arr
            else:
                # This should be impossible.
                raise ValueError("Illegal pixel sub index")

            # Erase the previous exposure.
            if order < max_order:
                exposures[(band, order)].image.array[:, :] = np.nan

# Write the properties files and MOCs.
if not do_color:
    for band in bands:
        band_pixels = np.array([pixel
                                for pixel, band_ in hips_exposure_handle_dict.keys()
                                if band_ == band])
        band_pixels = np.sort(band_pixels)

        self._write_properties_and_moc(
            hips_base_path.join(f"band_{band}", forceDirectory=True),
            max_order,
            band_pixels,
            exp0,
            shift_order,
            band,
            False,
        )
        self._write_allsky_file(
            hips_base_path.join(f"band_{band}", forceDirectory=True),
            min_order,
        )
else:
    self._write_properties_and_moc(
        hips_base_path.join(f"color_{colorstr}", forceDirectory=True),
        max_order,
        pixels[:-1],
        exp0,
        shift_order,
        colorstr,
        True,
    )
    self._write_allsky_file(
        hips_base_path.join(f"color_{colorstr}", forceDirectory=True),
        min_order,
    )

def _write_hips_image(self, hips_base_path, order, pixel, image, png_mapping, shift_order=9):
# WARNING: In general PipelineTasks are not allowed to do any outputs
# outside of the butler.  This task has been given (temporary)
# Special Dispensation because of the nature of HiPS outputs until
# a more controlled solution can be found.

dir_number = self._get_dir_number(pixel)
hips_dir = hips_base_path.join(
    f"Norder{order}",
    forceDirectory=True
).join(
    f"Dir{dir_number}",
    forceDirectory=True
)

wcs = makeHpxWcs(order, pixel, shift_order=shift_order)

uri = hips_dir.join(f"Npix{pixel}.fits")

with ResourcePath.temporary_uri(suffix=uri.getExtension()) as temporary_uri:
    image.writeFits(temporary_uri.ospath, metadata=wcs.getFitsMetadata())

    uri.transfer_from(temporary_uri, transfer="copy", overwrite=True)

# And make a grayscale png as well

with np.errstate(invalid="ignore"):
    vals = 255 - png_mapping.map_intensity_to_uint8(image.array).astype(np.uint8)

vals[~np.isfinite(image.array) | (image.array < 0)] = 0
im = Image.fromarray(vals[::-1, :], "L")

uri = hips_dir.join(f"Npix{pixel}.png")

with ResourcePath.temporary_uri(suffix=uri.getExtension()) as temporary_uri:
    im.save(temporary_uri.ospath)

    uri.transfer_from(temporary_uri, transfer="copy", overwrite=True)

def _write_hips_color_png(
    self,
    hips_base_path,
    order,
    pixel,
    image_red,
    image_green,
    image_blue,
    png_mapping,
):
# WARNING: In general PipelineTasks are not allowed to do any outputs
# outside of the butler.  This task has been given (temporary)
# Special Dispensation because of the nature of HiPS outputs until
# a more controlled solution can be found.

dir_number = self._get_dir_number(pixel)
hips_dir = hips_base_path.join(
    f"Norder{order}",
    forceDirectory=True
).join(
    f"Dir{dir_number}",
    forceDirectory=True
)

# We need to convert nans to the minimum values in the mapping.
arr_red = image_red.array.copy()
arr_red[np.isnan(arr_red)] = png_mapping.minimum[0]
arr_green = image_green.array.copy()
arr_green[np.isnan(arr_green)] = png_mapping.minimum[1]
arr_blue = image_blue.array.copy()
arr_blue[np.isnan(arr_blue)] = png_mapping.minimum[2]

image_array = png_mapping.make_rgb_image(arr_red, arr_green, arr_blue)

im = Image.fromarray(image_array[::-1, :, :], mode="RGB")

uri = hips_dir.join(f"Npix{pixel}.png")

with ResourcePath.temporary_uri(suffix=uri.getExtension()) as temporary_uri:
    im.save(temporary_uri.ospath)

    uri.transfer_from(temporary_uri, transfer="copy", overwrite=True)

def _write_properties_and_moc(
    self,
    hips_base_path,
    max_order,
    pixels,
    exposure,
    shift_order,
    band,
    multiband
):
area = hpg.nside_to_pixel_area(2**max_order, degrees=True)*len(pixels)

initial_ra = self.config.properties.initial_ra
initial_dec = self.config.properties.initial_dec
initial_fov = self.config.properties.initial_fov

if initial_ra is None or initial_dec is None or initial_fov is None:
    # We want to point to an arbitrary pixel in the footprint.
    # Just take the median pixel value for simplicity.
    temp_pixels = pixels.copy()
    if temp_pixels.size % 2 == 0:
        temp_pixels = np.append(temp_pixels, [temp_pixels[0]])
    medpix = int(np.median(temp_pixels))
    _initial_ra, _initial_dec = hpg.pixel_to_angle(2**max_order, medpix)
    _initial_fov = hpg.nside_to_resolution(2**max_order, units='arcminutes')/60.

    if initial_ra is None or initial_dec is None:
        initial_ra = _initial_ra
        initial_dec = _initial_dec
    if initial_fov is None:
        initial_fov = _initial_fov

self._write_hips_properties_file(
    hips_base_path,
    self.config.properties,
    band,
    multiband,
    exposure,
    max_order,
    shift_order,
    area,
    initial_ra,
    initial_dec,
    initial_fov,
)

# Write the MOC coverage
self._write_hips_moc_file(
    hips_base_path,
    max_order,
    pixels,
)

def _write_hips_properties_file(
    self,
    hips_base_path,
    properties_config,
    band,
    multiband,
    exposure,
    max_order,
    shift_order,
    area,
    initial_ra,
    initial_dec,
    initial_fov
):
# This ensures that the name has no spaces or space-like characters,
# per the HiPS standard.
if re.search(r"\s", name):
    raise ValueError(f"``{name}`` cannot contain any space characters.")
if "=" in name:
    raise ValueError(f"``{name}`` cannot contain an ``=``")

fh.write(f"{name:25}= {value}\n")

if exposure.image.array.dtype == np.dtype("float32"):
bitpix = -32
elif exposure.image.array.dtype == np.dtype("float64"):
bitpix = -64
elif exposure.image.array.dtype == np.dtype("int32"):
bitpix = 32

date_iso8601 = datetime.utcnow().isoformat(timespec="seconds") + "Z"
pixel_scale = hpg.nside_to_resolution(2**(max_order + shift_order), units='degrees')

uri = hips_base_path.join("properties")
with ResourcePath.temporary_uri(suffix=uri.getExtension()) as temporary_uri:
with open(temporary_uri.ospath, "w") as fh:
    _write_property(
        fh,
        "creator_did",
        properties_config.creator_did_template.format(band=band),
    )
    if properties_config.obs_collection is not None:
        _write_property(fh, "obs_collection", properties_config.obs_collection)
    _write_property(
        fh,
        "obs_title",
        properties_config.obs_title_template.format(band=band),
    )
    if properties_config.obs_description_template is not None:
        _write_property(
            fh,
            "obs_description",
            properties_config.obs_description_template.format(band=band),
        )
    if len(properties_config.prov_progenitor) > 0:
        for prov_progenitor in properties_config.prov_progenitor:
            _write_property(fh, "prov_progenitor", prov_progenitor)
    if properties_config.obs_ack is not None:
        _write_property(fh, "obs_ack", properties_config.obs_ack)
    _write_property(fh, "obs_regime", "Optical")
    _write_property(fh, "data_pixel_bitpix", str(bitpix))
    _write_property(fh, "dataproduct_type", "image")
    _write_property(fh, "moc_sky_fraction", str(area/41253.))
    _write_property(fh, "data_ucd", "phot.flux")
    _write_property(fh, "hips_creation_date", date_iso8601)
    _write_property(fh, "hips_builder", "lsst.pipe.tasks.hips.GenerateHipsTask")
    _write_property(fh, "hips_creator", "Vera C. Rubin Observatory")
    _write_property(fh, "hips_version", "1.4")
    _write_property(fh, "hips_release_date", date_iso8601)
    _write_property(fh, "hips_frame", "equatorial")
    _write_property(fh, "hips_order", str(max_order))
    _write_property(fh, "hips_tile_width", str(exposure.getBBox().getWidth()))
    _write_property(fh, "hips_status", "private master clonableOnce")
    if multiband:
        _write_property(fh, "hips_tile_format", "png")
        _write_property(fh, "dataproduct_subtype", "color")
    else:
        _write_property(fh, "hips_tile_format", "png fits")
    _write_property(fh, "hips_pixel_bitpix", str(bitpix))
    _write_property(fh, "hips_pixel_scale", str(pixel_scale))
    _write_property(fh, "hips_initial_ra", str(initial_ra))
    _write_property(fh, "hips_initial_dec", str(initial_dec))
    _write_property(fh, "hips_initial_fov", str(initial_fov))
    if multiband:
        if self.config.blue_channel_band in properties_config.spectral_ranges:
            em_min = properties_config.spectral_ranges[
                self.config.blue_channel_band
            ].lambda_min/1e9
        else:
            self.log.warning("blue band %s not in self.config.spectral_ranges.", band)
            em_min = 3e-7
        if self.config.red_channel_band in properties_config.spectral_ranges:
            em_max = properties_config.spectral_ranges[
                self.config.red_channel_band
            ].lambda_max/1e9
        else:
            self.log.warning("red band %s not in self.config.spectral_ranges.", band)
            em_max = 1e-6
    else:
        if band in properties_config.spectral_ranges:
            em_min = properties_config.spectral_ranges[band].lambda_min/1e9
            em_max = properties_config.spectral_ranges[band].lambda_max/1e9
        else:
            self.log.warning("band %s not in self.config.spectral_ranges.", band)
            em_min = 3e-7
            em_max = 1e-6
    _write_property(fh, "em_min", str(em_min))
    _write_property(fh, "em_max", str(em_max))
    if properties_config.t_min is not None:
        _write_property(fh, "t_min", properties_config.t_min)
    if properties_config.t_max is not None:
        _write_property(fh, "t_max", properties_config.t_max)

uri.transfer_from(temporary_uri, transfer="copy", overwrite=True)

def _write_hips_moc_file(self, hips_base_path, max_order, pixels, min_uniq_order=1):
# WARNING: In general PipelineTasks are not allowed to do any outputs
# outside of the butler.  This task has been given (temporary)
# Special Dispensation because of the nature of HiPS outputs until
# a more controlled solution can be found.

# Make the initial list of UNIQ pixels
uniq = 4*(4**max_order) + pixels

# Make a healsparse map which provides easy degrade/comparisons.
hspmap = hsp.HealSparseMap.make_empty(2**min_uniq_order, 2**max_order, dtype=np.float32)
hspmap[pixels] = 1.0

# Loop over orders, degrade each time, and look for pixels with full coverage.
for uniq_order in range(max_order - 1, min_uniq_order - 1, -1):
    hspmap = hspmap.degrade(2**uniq_order, reduction="sum")
    pix_shift = np.right_shift(pixels, 2*(max_order - uniq_order))
    # Check if any of the pixels at uniq_order have full coverage.
    covered, = np.isclose(hspmap[pix_shift], 4**(max_order - uniq_order)).nonzero()
    if covered.size == 0:
        # No pixels at uniq_order are fully covered, we're done.
        break
    # Replace the UNIQ pixels that are fully covered.
    uniq[covered] = 4*(4**uniq_order) + pix_shift[covered]

# Remove duplicate pixels.
uniq = np.unique(uniq)

# Output to fits.
tbl = np.zeros(uniq.size, dtype=[("UNIQ", "i8")])
tbl["UNIQ"] = uniq

order = np.log2(tbl["UNIQ"]//4).astype(np.int32)//2
moc_order = np.max(order)

hdu = fits.BinTableHDU(tbl)
hdu.header["PIXTYPE"] = "HEALPIX"
hdu.header["ORDERING"] = "NUNIQ"
hdu.header["COORDSYS"] = "C"
hdu.header["MOCORDER"] = moc_order
hdu.header["MOCTOOL"] = "lsst.pipe.tasks.hips.GenerateHipsTask"

uri = hips_base_path.join("Moc.fits")

with ResourcePath.temporary_uri(suffix=uri.getExtension()) as temporary_uri:
    hdu.writeto(temporary_uri.ospath)

    uri.transfer_from(temporary_uri, transfer="copy", overwrite=True)

def _write_allsky_file(self, hips_base_path, allsky_order):

Definition at line 1117 of file hips.py.

◆ hips_exposure_handle_dict

lsst.pipe.tasks.hips.hips_exposure_handle_dict : `dict` {`int`: `lsst.daf.butler.DeferredDatasetHandle`}

Definition at line 921 of file hips.py.

◆ https

int lsst.pipe.tasks.hips.https ://www.ivoa.net/documents/HiPS/20170519/REC-HIPS-1.0-20170519.pdf

Definition at line 120 of file hips.py.

◆ image

lsst.pipe.tasks.hips.image : `lsst.afw.image.Image`

Definition at line 1123 of file hips.py.

◆ image_blue

lsst.pipe.tasks.hips.image_blue : `lsst.afw.image.Image`

Definition at line 1192 of file hips.py.

◆ image_green

lsst.pipe.tasks.hips.image_green : `lsst.afw.image.Image`

Definition at line 1190 of file hips.py.

◆ image_red

lsst.pipe.tasks.hips.image_red : `lsst.afw.image.Image`

Definition at line 1188 of file hips.py.

◆ initial_dec

lsst.pipe.tasks.hips.initial_dec : `float`

Definition at line 1339 of file hips.py.

◆ initial_fov

lsst.pipe.tasks.hips.initial_fov : `float`

Definition at line 1341 of file hips.py.

◆ initial_ra

lsst.pipe.tasks.hips.initial_ra : `float`

Definition at line 1337 of file hips.py.

◆ input_collections

lsst.pipe.tasks.hips.input_collections : `str` or `Iterable` [ `str` ], optional

Definition at line 510 of file hips.py.

◆ max_order

lsst.pipe.tasks.hips.max_order : `int`

Definition at line 919 of file hips.py.

◆ min_uniq_order

lsst.pipe.tasks.hips.min_uniq_order : `int`, optional

Definition at line 1473 of file hips.py.

◆ multiband

lsst.pipe.tasks.hips.multiband : `bool`

Definition at line 1256 of file hips.py.

◆ name

lsst.pipe.tasks.hips.name : `str`

Definition at line 1355 of file hips.py.

◆ order

lsst.pipe.tasks.hips.order : `int`

Definition at line 1119 of file hips.py.

◆ output_run

lsst.pipe.tasks.hips.output_run : `str`, optional

Definition at line 513 of file hips.py.

◆ outputs

lsst.pipe.tasks.hips.outputs : `lsst.pipe.base.Struct`

Definition at line 232 of file hips.py.

◆ parser

lsst.pipe.tasks.hips.parser : `argparse.ArgumentParser`
parser = cls._make_cli_parser()

args = parser.parse_args(argv)

if args.subparser_name is None:
    parser.print_help()
    sys.exit(1)

pipeline = pipeBase.Pipeline.from_uri(args.pipeline)
pipeline_graph = pipeline.to_graph()

if len(pipeline_graph.tasks) != 1:
    raise RuntimeError(f"Pipeline file {args.pipeline} may only contain one task.")

(task_node,) = pipeline_graph.tasks.values()

butler = Butler(args.butler_config, collections=args.input)

if args.subparser_name == "segment":
    # Do the segmentation
    hpix_pixelization = HealpixPixelization(level=args.hpix_build_order)
    dataset = task_node.inputs["coadd_exposure_handles"].dataset_type_name
    data_ids = set(butler.registry.queryDataIds("tract", datasets=dataset).expanded())
    region_pixels = []
    for data_id in data_ids:
        region = data_id.region
        pixel_range = hpix_pixelization.envelope(region)
        for r in pixel_range.ranges():
            region_pixels.extend(range(r[0], r[1]))
    indices = np.unique(region_pixels)

    print(f"Pixels to run at HEALPix order --hpix_build_order {args.hpix_build_order}:")
    for pixel in indices:
        print(pixel)

elif args.subparser_name == "build":
    # Build the quantum graph.

    # Figure out collection names.
    if args.output_run is None:
        if args.output is None:
            raise ValueError("At least one of --output or --output-run options is required.")
        args.output_run = "{}/{}".format(args.output, pipeBase.Instrument.makeCollectionTimestamp())

    build_ranges = RangeSet(sorted(args.pixels))

    # Metadata includes a subset of attributes defined in CmdLineFwk.
    metadata = {
        "input": args.input,
        "butler_argument": args.butler_config,
        "output": args.output,
        "output_run": args.output_run,
        "data_query": args.where,
        "time": f"{datetime.now()}",
    }

    builder = HighResolutionHipsQuantumGraphBuilder(
        pipeline_graph,
        butler,
        input_collections=args.input,
        output_run=args.output_run,
        constraint_order=args.hpix_build_order,
        constraint_ranges=build_ranges,
        where=args.where,
    )
    qg = builder.build(metadata, attach_datastore_records=True)
    qg.saveUri(args.save_qgraph)

@classmethod
def _make_cli_parser(cls):

Definition at line 402 of file hips.py.

◆ pipeline_graph

lsst.pipe.tasks.hips.pipeline_graph : `lsst.pipe.base.PipelineGraph`
parser = argparse.ArgumentParser(
    description=(
        "Build a QuantumGraph that runs HighResolutionHipsTask on existing coadd datasets."
    ),
)
subparsers = parser.add_subparsers(help="sub-command help", dest="subparser_name")

parser_segment = subparsers.add_parser("segment",
                                       help="Determine survey segments for workflow.")
parser_build = subparsers.add_parser("build",
                                     help="Build quantum graph for HighResolutionHipsTask")

for sub in [parser_segment, parser_build]:
    # These arguments are in common.
    sub.add_argument(
        "-b",
        "--butler-config",
        type=str,
        help="Path to data repository or butler configuration.",
        required=True,
    )
    sub.add_argument(
        "-p",
        "--pipeline",
        type=str,
        help="Pipeline file, limited to one task.",
        required=True,
    )
    sub.add_argument(
        "-i",
        "--input",
        type=str,
        nargs="+",
        help="Input collection(s) to search for coadd exposures.",
        required=True,
    )
    sub.add_argument(
        "-o",
        "--hpix_build_order",
        type=int,
        default=1,
        help="HEALPix order to segment sky for building quantum graph files.",
    )
    sub.add_argument(
        "-w",
        "--where",
        type=str,
        default=None,
        help="Data ID expression used when querying for input coadd datasets.",
    )

parser_build.add_argument(
    "--output",
    type=str,
    help=(
        "Name of the output CHAINED collection. If this options is specified and "
        "--output-run is not, then a new RUN collection will be created by appending "
        "a timestamp to the value of this option."
    ),
    default=None,
    metavar="COLL",
)
parser_build.add_argument(
    "--output-run",
    type=str,
    help=(
        "Output RUN collection to write resulting images. If not provided "
        "then --output must be provided and a new RUN collection will be created "
        "by appending a timestamp to the value passed with --output."
    ),
    default=None,
    metavar="RUN",
)
parser_build.add_argument(
    "-q",
    "--save-qgraph",
    type=str,
    help="Output filename for QuantumGraph.",
    required=True,
)
parser_build.add_argument(
    "-P",
    "--pixels",
    type=int,
    nargs="+",
    help="Pixels at --hpix_build_order to generate quantum graph.",
    required=True,
)

return parser


class HighResolutionHipsQuantumGraphBuilder(QuantumGraphBuilder):

Definition at line 505 of file hips.py.

◆ pixel

lsst.pipe.tasks.hips.pixel : `int`
tile_size = self.config.allsky_tilesize

# The Allsky file format is described in
# https://www.ivoa.net/documents/HiPS/20170519/REC-HIPS-1.0-20170519.pdf
# From S4.3.2:
# The Allsky file is built as an array of tiles, stored side by side in
# the left-to-right order. The width of this array must be the square
# root of the number of the tiles of the order. For instance, the width
# of this array at order 3 is 27 ( (int)sqrt(768) ). To avoid having a
# too large Allsky file, the resolution of each tile may be reduced but
# must stay a power of two (typically 64x64 pixels rather than 512x512).

n_tiles = hpg.nside_to_npixel(hpg.order_to_nside(allsky_order))
n_tiles_wide = int(np.floor(np.sqrt(n_tiles)))
n_tiles_high = int(np.ceil(n_tiles / n_tiles_wide))

allsky_image = None

allsky_order_uri = hips_base_path.join(f"Norder{allsky_order}", forceDirectory=True)
pixel_regex = re.compile(r"Npix([0-9]+)\.png$")
png_uris = list(
    ResourcePath.findFileResources(
        candidates=[allsky_order_uri],
        file_filter=pixel_regex,
    )
)

for png_uri in png_uris:
    matches = re.match(pixel_regex, png_uri.basename())
    pix_num = int(matches.group(1))
    tile_image = Image.open(io.BytesIO(png_uri.read()))
    row = math.floor(pix_num//n_tiles_wide)
    column = pix_num % n_tiles_wide
    box = (column*tile_size, row*tile_size, (column + 1)*tile_size, (row + 1)*tile_size)
    tile_image_shrunk = tile_image.resize((tile_size, tile_size))

    if allsky_image is None:
        allsky_image = Image.new(
            tile_image.mode,
            (n_tiles_wide*tile_size, n_tiles_high*tile_size),
        )
    allsky_image.paste(tile_image_shrunk, box)

uri = allsky_order_uri.join("Allsky.png")

with ResourcePath.temporary_uri(suffix=uri.getExtension()) as temporary_uri:
    allsky_image.save(temporary_uri.ospath)

    uri.transfer_from(temporary_uri, transfer="copy", overwrite=True)

def _get_dir_number(self, pixel):

Definition at line 1121 of file hips.py.

◆ pixels

lsst.pipe.tasks.hips.pixels : `Iterable` [ `int` ]
def __init__(self, prefix):
    # create a defaultName template
    self._defaultName = f"{prefix}{{}}"
    self._order = None

def __get__(self, obj, klass=None):
    if klass is None:
        raise RuntimeError(
            "HipsTaskDescriptor was used in an unexpected context"
        )
    if self._order is None:
        klassDimensions = klass.ConfigClass.ConnectionsClass.dimensions
        for dim in klassDimensions:
            if (match := re.match(r"^healpix(\d*)$", dim)) is not None:
                self._order = int(match.group(1))
                break
        else:
            raise RuntimeError(
                "Could not find healpix dimension in connections class"
            )
    return self._defaultName.format(self._order)


class HighResolutionHipsTask(pipeBase.PipelineTask):
ConfigClass = HighResolutionHipsConfig
_DefaultName = HipsTaskNameDescriptor("highResolutionHips")

def __init__(self, **kwargs):
    super().__init__(**kwargs)
    self.warper = afwMath.Warper.fromConfig(self.config.warp)

@timeMethod
def runQuantum(self, butlerQC, inputRefs, outputRefs):
    inputs = butlerQC.get(inputRefs)

    healpix_dim = f"healpix{self.config.hips_order}"

    pixels = [hips_exposure.dataId[healpix_dim]
              for hips_exposure in outputRefs.hips_exposures]

    outputs = self.run(pixels=pixels, coadd_exposure_handles=inputs["coadd_exposure_handles"])

    hips_exposure_ref_dict = {hips_exposure_ref.dataId[healpix_dim]:
                              hips_exposure_ref for hips_exposure_ref in outputRefs.hips_exposures}
    for pixel, hips_exposure in outputs.hips_exposures.items():
        butlerQC.put(hips_exposure, hips_exposure_ref_dict[pixel])

def run(self, pixels, coadd_exposure_handles):

Definition at line 225 of file hips.py.

◆ png_mapping

lsst.pipe.tasks.hips.png_mapping : `astropy.visualization.lupton_rgb.AsinhMapping`

Definition at line 1125 of file hips.py.

◆ prefix

lsst.pipe.tasks.hips.prefix : `str`
hips_order = pexConfig.Field(
    doc="HIPS image order.",
    dtype=int,
    default=11,
)
shift_order = pexConfig.Field(
    doc="HIPS shift order (such that each tile is 2**shift_order pixels on a side)",
    dtype=int,
    default=9,
)
warp = pexConfig.ConfigField(
    dtype=afwMath.Warper.ConfigClass,
    doc="Warper configuration",
)

def setDefaults(self):
    self.warp.warpingKernelName = "lanczos5"


class HipsTaskNameDescriptor:

Definition at line 168 of file hips.py.

◆ properties_config

lsst.pipe.tasks.hips.properties_config : `lsst.pipe.tasks.hips.HipsPropertiesConfig`

Definition at line 1323 of file hips.py.

◆ shift_order

lsst.pipe.tasks.hips.shift_order = 512 pixels on a side.

Definition at line 117 of file hips.py.

◆ value

lsst.pipe.tasks.hips.value : `str`

Definition at line 1357 of file hips.py.

◆ where

lsst.pipe.tasks.hips.where : `str`, optional

Definition at line 525 of file hips.py.