LSST Applications g04a91732dc+146a938ab0,g07dc498a13+80b84b0d75,g0fba68d861+4c4f3dcb5c,g1409bbee79+80b84b0d75,g1a7e361dbc+80b84b0d75,g1fd858c14a+f6e422e056,g20f46db602+333b6c0f32,g35bb328faa+fcb1d3bbc8,g42c1b31a95+a1301e4c20,g4d2262a081+f1facf12e5,g4d39ba7253+9b833be27e,g4e0f332c67+5d362be553,g53246c7159+fcb1d3bbc8,g60b5630c4e+9b833be27e,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g8852436030+790117df0f,g89139ef638+80b84b0d75,g8d6b6b353c+9b833be27e,g9125e01d80+fcb1d3bbc8,g989de1cb63+80b84b0d75,g9f33ca652e+9c6b68d7f3,ga9baa6287d+9b833be27e,gaaedd4e678+80b84b0d75,gabe3b4be73+1e0a283bba,gb1101e3267+9f3571abad,gb58c049af0+f03b321e39,gb90eeb9370+691e4ab549,gc741bbaa4f+2bcd3860df,gcf25f946ba+790117df0f,gd315a588df+5b65d88fe4,gd6cbbdb0b4+c8606af20c,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+ee6a3faa19,ge278dab8ac+932305ba37,ge82c20c137+76d20ab76d,gee8db133a9+2a6ae0040b,w.2025.10
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.pipe.tasks.matchFakes Namespace Reference

Classes

class  MatchFakesConnections
 

Variables

 fakeCats : `pandas.DataFrame`
 
 skyMap : `lsst.skymap.SkyMap`
 
 diffIm : `lsst.afw.image.Exposure`
 
 associatedDiaSources : `pandas.DataFrame`
 
 result : `lsst.pipe.base.Struct`
 
 fakeCat : `pandas.DataFrame`
 
 combinedFakeCat : `pandas.DataFrame`
 
 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
 
 movingFakeCat : `pandas.DataFrame`
 
 image : `lsst.afw.image.exposure.exposure.ExposureF`
 
 ras : `numpy.ndarray`, (N,)
 
 decs : `numpy.ndarray`, (N,)
 
 vectors : `numpy.ndarray`, (N, 3)
 
 ccdVisitFakeMagnitudes : `pandas.DataFrame`
 
 band : `str`
 

Variable Documentation

◆ associatedDiaSources

lsst.pipe.tasks.matchFakes.associatedDiaSources : `pandas.DataFrame`

Definition at line 148 of file matchFakes.py.

◆ band

lsst.pipe.tasks.matchFakes.band : `str`

Definition at line 427 of file matchFakes.py.

◆ ccdVisitFakeMagnitudes

lsst.pipe.tasks.matchFakes.ccdVisitFakeMagnitudes : `pandas.DataFrame`

Definition at line 425 of file matchFakes.py.

◆ combinedFakeCat

lsst.pipe.tasks.matchFakes.combinedFakeCat : `pandas.DataFrame`

Definition at line 222 of file matchFakes.py.

◆ decs

lsst.pipe.tasks.matchFakes.decs : `numpy.ndarray`, (N,)

Definition at line 328 of file matchFakes.py.

◆ diffIm

lsst.pipe.tasks.matchFakes.diffIm : `lsst.afw.image.Exposure`

Definition at line 146 of file matchFakes.py.

◆ exposure

lsst.pipe.tasks.matchFakes.exposure : `lsst.afw.image.exposure.exposure.ExposureF`

Definition at line 248 of file matchFakes.py.

◆ fakeCat

lsst.pipe.tasks.matchFakes.fakeCat : `pandas.DataFrame`
fakeCat = self.composeFakeCat(fakeCats, skyMap)

if self.config.doMatchVisit:
    fakeCat = self.getVisitMatchedFakeCat(fakeCat, diffIm)

return self._processFakes(fakeCat, diffIm, associatedDiaSources)

def _processFakes(self, fakeCat, diffIm, associatedDiaSources):
if len(fakeCats) == 1:
    return fakeCats[0].get()
outputCat = []
for fakeCatRef in fakeCats:
    cat = fakeCatRef.get()
    tractId = fakeCatRef.dataId["tract"]
    # Make sure all data is within the inner part of the tract.
    outputCat.append(cat[
        skyMap.findTractIdArray(cat[self.config.ra_col],
                                cat[self.config.dec_col],
                                degrees=False)
        == tractId])

return pd.concat(outputCat)

def getVisitMatchedFakeCat(self, fakeCat, exposure):
selected = exposure.getInfo().getVisitInfo().getId() == fakeCat["visit"]

return fakeCat[selected]

def _addPixCoords(self, fakeCat, image):
wcs = image.getWcs()
ras = fakeCat[self.config.ra_col].values
decs = fakeCat[self.config.dec_col].values
xs, ys = wcs.skyToPixelArray(ras, decs)
fakeCat["x"] = xs
fakeCat["y"] = ys

return fakeCat

def _trimFakeCat(self, fakeCat, image):
vectors = np.empty((len(ras), 3))

vectors[:, 2] = np.sin(decs)
vectors[:, 0] = np.cos(decs) * np.cos(ras)
vectors[:, 1] = np.cos(decs) * np.sin(ras)

return vectors


class MatchVariableFakesConnections(MatchFakesConnections):
ccdVisitFakeMagnitudes = connTypes.Input(
doc="Catalog of fakes with magnitudes scattered for this ccdVisit.",
name="{fakesType}ccdVisitFakeMagnitudes",
storageClass="DataFrame",
dimensions=("instrument", "visit", "detector"),
)


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchVariableFakesConfig(MatchFakesConfig,
                       pipelineConnections=MatchVariableFakesConnections):
pass


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchVariableFakesTask(MatchFakesTask):
_DefaultName = "matchVariableFakes"
ConfigClass = MatchVariableFakesConfig

def runQuantum(self, butlerQC, inputRefs, outputRefs):
    inputs = butlerQC.get(inputRefs)
    inputs["band"] = butlerQC.quantum.dataId["band"]

    outputs = self.run(**inputs)
    butlerQC.put(outputs, outputRefs)

def run(self, fakeCats, ccdVisitFakeMagnitudes, skyMap, diffIm, associatedDiaSources, band):
fakeCat = self.composeFakeCat(fakeCats, skyMap)
self.computeExpectedDiffMag(fakeCat, ccdVisitFakeMagnitudes, band)
return self._processFakes(fakeCat, diffIm, associatedDiaSources)

def computeExpectedDiffMag(self, fakeCat, ccdVisitFakeMagnitudes, band):

Definition at line 171 of file matchFakes.py.

◆ fakeCats

lsst.pipe.tasks.matchFakes.fakeCats : `pandas.DataFrame`
matchDistanceArcseconds = pexConfig.RangeField(
    doc="Distance in arcseconds to match within.",
    dtype=float,
    default=0.5,
    min=0,
    max=10,
)

doMatchVisit = pexConfig.Field(
    dtype=bool,
    default=False,
    doc="Match visit to trim the fakeCat"
)

trimBuffer = pexConfig.Field(
    doc="Size of the pixel buffer surrounding the image. Only those fake sources with a centroid"
    "falling within the image+buffer region will be considered matches.",
    dtype=int,
    default=100,
)


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchFakesTask(PipelineTask):
_DefaultName = "matchFakes"
ConfigClass = MatchFakesConfig

def run(self, fakeCats, skyMap, diffIm, associatedDiaSources):
trimmedFakes = self._trimFakeCat(fakeCat, diffIm)
nPossibleFakes = len(trimmedFakes)

fakeVects = self._getVectors(trimmedFakes[self.config.ra_col],
                             trimmedFakes[self.config.dec_col])
diaSrcVects = self._getVectors(
    np.radians(associatedDiaSources.loc[:, "ra"]),
    np.radians(associatedDiaSources.loc[:, "dec"]))

diaSrcTree = cKDTree(diaSrcVects)
dist, idxs = diaSrcTree.query(
    fakeVects,
    distance_upper_bound=np.radians(self.config.matchDistanceArcseconds / 3600))
nFakesFound = np.isfinite(dist).sum()

self.log.info("Found %d out of %d possible.", nFakesFound, nPossibleFakes)
diaSrcIds = associatedDiaSources.iloc[np.where(np.isfinite(dist), idxs, 0)]["diaSourceId"].to_numpy()
matchedFakes = trimmedFakes.assign(diaSourceId=np.where(np.isfinite(dist), diaSrcIds, 0))

return Struct(
    matchedDiaSources=matchedFakes.merge(
        associatedDiaSources.reset_index(drop=True), on="diaSourceId", how="left")
)

def composeFakeCat(self, fakeCats, skyMap):

Definition at line 142 of file matchFakes.py.

◆ image

lsst.pipe.tasks.matchFakes.image : `lsst.afw.image.exposure.exposure.ExposureF`

Definition at line 268 of file matchFakes.py.

◆ movingFakeCat

lsst.pipe.tasks.matchFakes.movingFakeCat : `pandas.DataFrame`

Definition at line 253 of file matchFakes.py.

◆ ras

lsst.pipe.tasks.matchFakes.ras : `numpy.ndarray`, (N,)
# fakeCat must be processed with _addPixCoords before trimming
if ('x' not in fakeCat.columns) or ('y' not in fakeCat.columns):
    fakeCat = self._addPixCoords(fakeCat, image)

# Prefilter in ra/dec to avoid cases where the wcs incorrectly maps
# input fakes which are really off the chip onto it.
ras = fakeCat[self.config.ra_col].values * u.rad
decs = fakeCat[self.config.dec_col].values * u.rad

isContainedRaDec = image.containsSkyCoords(ras, decs, padding=0)

# now use the exact pixel BBox to filter to only fakes that were inserted
xs = fakeCat["x"].values
ys = fakeCat["y"].values

bbox = Box2D(image.getBBox())
isContainedXy = xs >= bbox.minX
isContainedXy &= xs <= bbox.maxX
isContainedXy &= ys >= bbox.minY
isContainedXy &= ys <= bbox.maxY

return fakeCat[isContainedRaDec & isContainedXy]

def _getVectors(self, ras, decs):

Definition at line 326 of file matchFakes.py.

◆ result

lsst.pipe.tasks.matchFakes.result : `lsst.pipe.base.Struct`

Definition at line 153 of file matchFakes.py.

◆ skyMap

lsst.pipe.tasks.matchFakes.skyMap : `lsst.skymap.SkyMap`

Definition at line 144 of file matchFakes.py.

◆ vectors

lsst.pipe.tasks.matchFakes.vectors : `numpy.ndarray`, (N, 3)

Definition at line 333 of file matchFakes.py.