LSST Applications g0f08755f38+9c285cab97,g1635faa6d4+13f3999e92,g1653933729+a8ce1bb630,g1a0ca8cf93+bf6eb00ceb,g28da252d5a+0829b12dee,g29321ee8c0+5700dc9eac,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+fde0dd39b6,g5fbc88fb19+17cd334064,g781aacb6e4+a8ce1bb630,g80478fca09+55a9465950,g82479be7b0+d730eedb7d,g858d7b2824+9c285cab97,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+2a84bb7594,gacf8899fa4+c69c5206e8,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gc28159a63d+9634bc57db,gcf0d15dbbd+4b7d09cae4,gda3e153d99+9c285cab97,gda6a2b7d83+4b7d09cae4,gdaeeff99f8+1711a396fd,ge2409df99d+5e831397f4,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+41c94011de,gf3fb38a9a8+8f07a9901b,gfb92a5be7c+9c285cab97,w.2024.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
Classes | Variables
lsst.pipe.tasks.matchFakes Namespace Reference

Classes

class  MatchFakesConnections
 

Variables

 fakeCats : `pandas.DataFrame`
 
 skyMap : `lsst.skymap.SkyMap`
 
 diffIm : `lsst.afw.image.Exposure`
 
 associatedDiaSources : `pandas.DataFrame`
 
 result : `lsst.pipe.base.Struct`
 
 fakeCat : `pandas.DataFrame`
 
 combinedFakeCat : `pandas.DataFrame`
 
 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
 
 movingFakeCat : `pandas.DataFrame`
 
 image : `lsst.afw.image.exposure.exposure.ExposureF`
 
 ras : `numpy.ndarray`, (N,)
 
 decs : `numpy.ndarray`, (N,)
 
 vectors : `numpy.ndarray`, (N, 3)
 
 ccdVisitFakeMagnitudes : `pandas.DataFrame`
 
 band : `str`
 

Variable Documentation

◆ associatedDiaSources

lsst.pipe.tasks.matchFakes.associatedDiaSources : `pandas.DataFrame`

Definition at line 148 of file matchFakes.py.

◆ band

lsst.pipe.tasks.matchFakes.band : `str`

Definition at line 427 of file matchFakes.py.

◆ ccdVisitFakeMagnitudes

lsst.pipe.tasks.matchFakes.ccdVisitFakeMagnitudes : `pandas.DataFrame`

Definition at line 425 of file matchFakes.py.

◆ combinedFakeCat

lsst.pipe.tasks.matchFakes.combinedFakeCat : `pandas.DataFrame`

Definition at line 222 of file matchFakes.py.

◆ decs

lsst.pipe.tasks.matchFakes.decs : `numpy.ndarray`, (N,)

Definition at line 328 of file matchFakes.py.

◆ diffIm

lsst.pipe.tasks.matchFakes.diffIm : `lsst.afw.image.Exposure`

Definition at line 146 of file matchFakes.py.

◆ exposure

lsst.pipe.tasks.matchFakes.exposure : `lsst.afw.image.exposure.exposure.ExposureF`

Definition at line 248 of file matchFakes.py.

◆ fakeCat

lsst.pipe.tasks.matchFakes.fakeCat : `pandas.DataFrame`
fakeCat = self.composeFakeCat(fakeCats, skyMap)

if self.config.doMatchVisit:
    fakeCat = self.getVisitMatchedFakeCat(fakeCat, diffIm)

return self._processFakes(fakeCat, diffIm, associatedDiaSources)

def _processFakes(self, fakeCat, diffIm, associatedDiaSources):
if len(fakeCats) == 1:
    return fakeCats[0].get()
outputCat = []
for fakeCatRef in fakeCats:
    cat = fakeCatRef.get()
    tractId = fakeCatRef.dataId["tract"]
    # Make sure all data is within the inner part of the tract.
    outputCat.append(cat[
        skyMap.findTractIdArray(cat[self.config.ra_col],
                                cat[self.config.dec_col],
                                degrees=False)
        == tractId])

return pd.concat(outputCat)

def getVisitMatchedFakeCat(self, fakeCat, exposure):
selected = exposure.getInfo().getVisitInfo().getId() == fakeCat["visit"]

return fakeCat[selected]

def _addPixCoords(self, fakeCat, image):
wcs = image.getWcs()
ras = fakeCat[self.config.ra_col].values
decs = fakeCat[self.config.dec_col].values
xs, ys = wcs.skyToPixelArray(ras, decs)
fakeCat["x"] = xs
fakeCat["y"] = ys

return fakeCat

def _trimFakeCat(self, fakeCat, image):
vectors = np.empty((len(ras), 3))

vectors[:, 2] = np.sin(decs)
vectors[:, 0] = np.cos(decs) * np.cos(ras)
vectors[:, 1] = np.cos(decs) * np.sin(ras)

return vectors


class MatchVariableFakesConnections(MatchFakesConnections):
ccdVisitFakeMagnitudes = connTypes.Input(
doc="Catalog of fakes with magnitudes scattered for this ccdVisit.",
name="{fakesType}ccdVisitFakeMagnitudes",
storageClass="DataFrame",
dimensions=("instrument", "visit", "detector"),
)


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchVariableFakesConfig(MatchFakesConfig,
                       pipelineConnections=MatchVariableFakesConnections):
pass


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchVariableFakesTask(MatchFakesTask):
_DefaultName = "matchVariableFakes"
ConfigClass = MatchVariableFakesConfig

def runQuantum(self, butlerQC, inputRefs, outputRefs):
    inputs = butlerQC.get(inputRefs)
    inputs["band"] = butlerQC.quantum.dataId["band"]

    outputs = self.run(**inputs)
    butlerQC.put(outputs, outputRefs)

def run(self, fakeCats, ccdVisitFakeMagnitudes, skyMap, diffIm, associatedDiaSources, band):
fakeCat = self.composeFakeCat(fakeCats, skyMap)
self.computeExpectedDiffMag(fakeCat, ccdVisitFakeMagnitudes, band)
return self._processFakes(fakeCat, diffIm, associatedDiaSources)

def computeExpectedDiffMag(self, fakeCat, ccdVisitFakeMagnitudes, band):

Definition at line 171 of file matchFakes.py.

◆ fakeCats

lsst.pipe.tasks.matchFakes.fakeCats : `pandas.DataFrame`
matchDistanceArcseconds = pexConfig.RangeField(
    doc="Distance in arcseconds to match within.",
    dtype=float,
    default=0.5,
    min=0,
    max=10,
)

doMatchVisit = pexConfig.Field(
    dtype=bool,
    default=False,
    doc="Match visit to trim the fakeCat"
)

trimBuffer = pexConfig.Field(
    doc="Size of the pixel buffer surrounding the image. Only those fake sources with a centroid"
    "falling within the image+buffer region will be considered matches.",
    dtype=int,
    default=100,
)


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchFakesTask(PipelineTask):
_DefaultName = "matchFakes"
ConfigClass = MatchFakesConfig

def run(self, fakeCats, skyMap, diffIm, associatedDiaSources):
trimmedFakes = self._trimFakeCat(fakeCat, diffIm)
nPossibleFakes = len(trimmedFakes)

fakeVects = self._getVectors(trimmedFakes[self.config.ra_col],
                             trimmedFakes[self.config.dec_col])
diaSrcVects = self._getVectors(
    np.radians(associatedDiaSources.loc[:, "ra"]),
    np.radians(associatedDiaSources.loc[:, "dec"]))

diaSrcTree = cKDTree(diaSrcVects)
dist, idxs = diaSrcTree.query(
    fakeVects,
    distance_upper_bound=np.radians(self.config.matchDistanceArcseconds / 3600))
nFakesFound = np.isfinite(dist).sum()

self.log.info("Found %d out of %d possible.", nFakesFound, nPossibleFakes)
diaSrcIds = associatedDiaSources.iloc[np.where(np.isfinite(dist), idxs, 0)]["diaSourceId"].to_numpy()
matchedFakes = trimmedFakes.assign(diaSourceId=np.where(np.isfinite(dist), diaSrcIds, 0))

return Struct(
    matchedDiaSources=matchedFakes.merge(
        associatedDiaSources.reset_index(drop=True), on="diaSourceId", how="left")
)

def composeFakeCat(self, fakeCats, skyMap):

Definition at line 142 of file matchFakes.py.

◆ image

lsst.pipe.tasks.matchFakes.image : `lsst.afw.image.exposure.exposure.ExposureF`

Definition at line 268 of file matchFakes.py.

◆ movingFakeCat

lsst.pipe.tasks.matchFakes.movingFakeCat : `pandas.DataFrame`

Definition at line 253 of file matchFakes.py.

◆ ras

lsst.pipe.tasks.matchFakes.ras : `numpy.ndarray`, (N,)
# fakeCat must be processed with _addPixCoords before trimming
if ('x' not in fakeCat.columns) or ('y' not in fakeCat.columns):
    fakeCat = self._addPixCoords(fakeCat, image)

# Prefilter in ra/dec to avoid cases where the wcs incorrectly maps
# input fakes which are really off the chip onto it.
ras = fakeCat[self.config.ra_col].values * u.rad
decs = fakeCat[self.config.dec_col].values * u.rad

isContainedRaDec = image.containsSkyCoords(ras, decs, padding=0)

# now use the exact pixel BBox to filter to only fakes that were inserted
xs = fakeCat["x"].values
ys = fakeCat["y"].values

bbox = Box2D(image.getBBox())
isContainedXy = xs >= bbox.minX
isContainedXy &= xs <= bbox.maxX
isContainedXy &= ys >= bbox.minY
isContainedXy &= ys <= bbox.maxY

return fakeCat[isContainedRaDec & isContainedXy]

def _getVectors(self, ras, decs):

Definition at line 326 of file matchFakes.py.

◆ result

lsst.pipe.tasks.matchFakes.result : `lsst.pipe.base.Struct`

Definition at line 153 of file matchFakes.py.

◆ skyMap

lsst.pipe.tasks.matchFakes.skyMap : `lsst.skymap.SkyMap`

Definition at line 144 of file matchFakes.py.

◆ vectors

lsst.pipe.tasks.matchFakes.vectors : `numpy.ndarray`, (N, 3)

Definition at line 333 of file matchFakes.py.