LSST Applications g04e9c324dd+8c5ae1fdc5,g1567b3d500+b0659b51fd,g199a45376c+0ba108daf9,g1fd858c14a+f0198063e6,g262e1987ae+ddad5971a2,g29a0cc5914+e350139995,g29ae962dfc+d032007649,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+65596d926d,g47891489e3+f62ff855a3,g4d44eb3520+5594e4ddd3,g53246c7159+8c5ae1fdc5,g667e5db04e+7fffd4297e,g67b6fd64d1+f62ff855a3,g67fd3c3899+c3deb07ab9,g74acd417e5+29806445f4,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g89139ef638+f62ff855a3,g8d7436a09f+f3e3f0406c,g8ea07a8fe4+72e50bfcbe,g90f42f885a+232124b352,g97be763408+27a7069373,g9dd6db0277+c3deb07ab9,ga2a72113ab+fe106acc69,gabf8522325+f227d7ba3a,gac2eed3f23+f62ff855a3,gb89ab40317+f62ff855a3,gbf99507273+8c5ae1fdc5,gceab9eb81a+0a7a0b7d10,gd14cc1c8cb+796e414499,gd8ff7fe66e+c3deb07ab9,gdab6d2f7ff+29806445f4,gdc713202bf+c3deb07ab9,ge410e46f29+f62ff855a3,geaed405ab2+2322f1d6ea,gffca2db377+8c5ae1fdc5,w.2025.33
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.pipe.tasks.matchFakes Namespace Reference

Classes

class  MatchFakesConnections
 

Variables

 fakeCats : `pandas.DataFrame`
 
 skyMap : `lsst.skymap.SkyMap`
 
 diffIm : `lsst.afw.image.Exposure`
 
 associatedDiaSources : `pandas.DataFrame`
 
 result : `lsst.pipe.base.Struct`
 
 fakeCat : `pandas.DataFrame`
 
 combinedFakeCat : `pandas.DataFrame`
 
 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
 
 movingFakeCat : `pandas.DataFrame`
 
 image : `lsst.afw.image.exposure.exposure.ExposureF`
 
 ras : `numpy.ndarray`, (N,)
 
 decs : `numpy.ndarray`, (N,)
 
 vectors : `numpy.ndarray`, (N, 3)
 
 ccdVisitFakeMagnitudes : `pandas.DataFrame`
 
 band : `str`
 

Variable Documentation

◆ associatedDiaSources

lsst.pipe.tasks.matchFakes.associatedDiaSources : `pandas.DataFrame`

Definition at line 148 of file matchFakes.py.

◆ band

lsst.pipe.tasks.matchFakes.band : `str`

Definition at line 427 of file matchFakes.py.

◆ ccdVisitFakeMagnitudes

lsst.pipe.tasks.matchFakes.ccdVisitFakeMagnitudes : `pandas.DataFrame`

Definition at line 425 of file matchFakes.py.

◆ combinedFakeCat

lsst.pipe.tasks.matchFakes.combinedFakeCat : `pandas.DataFrame`

Definition at line 222 of file matchFakes.py.

◆ decs

lsst.pipe.tasks.matchFakes.decs : `numpy.ndarray`, (N,)

Definition at line 328 of file matchFakes.py.

◆ diffIm

lsst.pipe.tasks.matchFakes.diffIm : `lsst.afw.image.Exposure`

Definition at line 146 of file matchFakes.py.

◆ exposure

lsst.pipe.tasks.matchFakes.exposure : `lsst.afw.image.exposure.exposure.ExposureF`

Definition at line 248 of file matchFakes.py.

◆ fakeCat

lsst.pipe.tasks.matchFakes.fakeCat : `pandas.DataFrame`
fakeCat = self.composeFakeCat(fakeCats, skyMap)

if self.config.doMatchVisit:
    fakeCat = self.getVisitMatchedFakeCat(fakeCat, diffIm)

return self._processFakes(fakeCat, diffIm, associatedDiaSources)

def _processFakes(self, fakeCat, diffIm, associatedDiaSources):
if len(fakeCats) == 1:
    return fakeCats[0].get()
outputCat = []
for fakeCatRef in fakeCats:
    cat = fakeCatRef.get()
    tractId = fakeCatRef.dataId["tract"]
    # Make sure all data is within the inner part of the tract.
    outputCat.append(cat[
        skyMap.findTractIdArray(cat[self.config.ra_col],
                                cat[self.config.dec_col],
                                degrees=False)
        == tractId])

return pd.concat(outputCat)

def getVisitMatchedFakeCat(self, fakeCat, exposure):
selected = exposure.getInfo().getVisitInfo().getId() == fakeCat["visit"]

return fakeCat[selected]

def _addPixCoords(self, fakeCat, image):
wcs = image.getWcs()
ras = fakeCat[self.config.ra_col].values
decs = fakeCat[self.config.dec_col].values
xs, ys = wcs.skyToPixelArray(ras, decs)
fakeCat["x"] = xs
fakeCat["y"] = ys

return fakeCat

def _trimFakeCat(self, fakeCat, image):
vectors = np.empty((len(ras), 3))

vectors[:, 2] = np.sin(decs)
vectors[:, 0] = np.cos(decs) * np.cos(ras)
vectors[:, 1] = np.cos(decs) * np.sin(ras)

return vectors


class MatchVariableFakesConnections(MatchFakesConnections):
ccdVisitFakeMagnitudes = connTypes.Input(
doc="Catalog of fakes with magnitudes scattered for this ccdVisit.",
name="{fakesType}ccdVisitFakeMagnitudes",
storageClass="DataFrame",
dimensions=("instrument", "visit", "detector"),
)


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchVariableFakesConfig(MatchFakesConfig,
                       pipelineConnections=MatchVariableFakesConnections):
pass


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchVariableFakesTask(MatchFakesTask):
_DefaultName = "matchVariableFakes"
ConfigClass = MatchVariableFakesConfig

def runQuantum(self, butlerQC, inputRefs, outputRefs):
    inputs = butlerQC.get(inputRefs)
    inputs["band"] = butlerQC.quantum.dataId["band"]

    outputs = self.run(**inputs)
    butlerQC.put(outputs, outputRefs)

def run(self, fakeCats, ccdVisitFakeMagnitudes, skyMap, diffIm, associatedDiaSources, band):
fakeCat = self.composeFakeCat(fakeCats, skyMap)
self.computeExpectedDiffMag(fakeCat, ccdVisitFakeMagnitudes, band)
return self._processFakes(fakeCat, diffIm, associatedDiaSources)

def computeExpectedDiffMag(self, fakeCat, ccdVisitFakeMagnitudes, band):

Definition at line 171 of file matchFakes.py.

◆ fakeCats

lsst.pipe.tasks.matchFakes.fakeCats : `pandas.DataFrame`
matchDistanceArcseconds = pexConfig.RangeField(
    doc="Distance in arcseconds to match within.",
    dtype=float,
    default=0.5,
    min=0,
    max=10,
)

doMatchVisit = pexConfig.Field(
    dtype=bool,
    default=False,
    doc="Match visit to trim the fakeCat"
)

trimBuffer = pexConfig.Field(
    doc="Size of the pixel buffer surrounding the image. Only those fake sources with a centroid"
    "falling within the image+buffer region will be considered matches.",
    dtype=int,
    default=100,
)


@deprecated(
reason="This task will be removed in v28.0 as it is replaced by `source_injection` tasks.",
version="v28.0",
category=FutureWarning,
)
class MatchFakesTask(PipelineTask):
_DefaultName = "matchFakes"
ConfigClass = MatchFakesConfig

def run(self, fakeCats, skyMap, diffIm, associatedDiaSources):
trimmedFakes = self._trimFakeCat(fakeCat, diffIm)
nPossibleFakes = len(trimmedFakes)

fakeVects = self._getVectors(trimmedFakes[self.config.ra_col],
                             trimmedFakes[self.config.dec_col])
diaSrcVects = self._getVectors(
    np.radians(associatedDiaSources.loc[:, "ra"]),
    np.radians(associatedDiaSources.loc[:, "dec"]))

diaSrcTree = cKDTree(diaSrcVects)
dist, idxs = diaSrcTree.query(
    fakeVects,
    distance_upper_bound=np.radians(self.config.matchDistanceArcseconds / 3600))
nFakesFound = np.isfinite(dist).sum()

self.log.info("Found %d out of %d possible.", nFakesFound, nPossibleFakes)
diaSrcIds = associatedDiaSources.iloc[np.where(np.isfinite(dist), idxs, 0)]["diaSourceId"].to_numpy()
matchedFakes = trimmedFakes.assign(diaSourceId=np.where(np.isfinite(dist), diaSrcIds, 0))

return Struct(
    matchedDiaSources=matchedFakes.merge(
        associatedDiaSources.reset_index(drop=True), on="diaSourceId", how="left")
)

def composeFakeCat(self, fakeCats, skyMap):

Definition at line 142 of file matchFakes.py.

◆ image

lsst.pipe.tasks.matchFakes.image : `lsst.afw.image.exposure.exposure.ExposureF`

Definition at line 268 of file matchFakes.py.

◆ movingFakeCat

lsst.pipe.tasks.matchFakes.movingFakeCat : `pandas.DataFrame`

Definition at line 253 of file matchFakes.py.

◆ ras

lsst.pipe.tasks.matchFakes.ras : `numpy.ndarray`, (N,)
# fakeCat must be processed with _addPixCoords before trimming
if ('x' not in fakeCat.columns) or ('y' not in fakeCat.columns):
    fakeCat = self._addPixCoords(fakeCat, image)

# Prefilter in ra/dec to avoid cases where the wcs incorrectly maps
# input fakes which are really off the chip onto it.
ras = fakeCat[self.config.ra_col].values * u.rad
decs = fakeCat[self.config.dec_col].values * u.rad

isContainedRaDec = image.containsSkyCoords(ras, decs, padding=0)

# now use the exact pixel BBox to filter to only fakes that were inserted
xs = fakeCat["x"].values
ys = fakeCat["y"].values

bbox = Box2D(image.getBBox())
isContainedXy = xs >= bbox.minX
isContainedXy &= xs <= bbox.maxX
isContainedXy &= ys >= bbox.minY
isContainedXy &= ys <= bbox.maxY

return fakeCat[isContainedRaDec & isContainedXy]

def _getVectors(self, ras, decs):

Definition at line 326 of file matchFakes.py.

◆ result

lsst.pipe.tasks.matchFakes.result : `lsst.pipe.base.Struct`

Definition at line 153 of file matchFakes.py.

◆ skyMap

lsst.pipe.tasks.matchFakes.skyMap : `lsst.skymap.SkyMap`

Definition at line 144 of file matchFakes.py.

◆ vectors

lsst.pipe.tasks.matchFakes.vectors : `numpy.ndarray`, (N, 3)

Definition at line 333 of file matchFakes.py.