LSST Applications g0fba68d861+5b9ba6aee1,g1ec0fe41b4+e220e2fb2f,g1fd858c14a+120b017347,g35bb328faa+fcb1d3bbc8,g4d2262a081+57a06a8609,g53246c7159+fcb1d3bbc8,g56a49b3a55+8d793c2a3d,g60b5630c4e+4e8d433789,g60dcce3b99+6eff471efc,g67b6fd64d1+fad15079a7,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g8180f54f50+65cb53bb37,g8352419a5c+fcb1d3bbc8,g8852436030+ae791ba189,g89139ef638+fad15079a7,g9125e01d80+fcb1d3bbc8,g94187f82dc+4e8d433789,g989de1cb63+fad15079a7,g9ccd5d7f00+cce09d2c12,g9d31334357+4e8d433789,g9f33ca652e+323fd354f8,gabe3b4be73+1e0a283bba,gabf8522325+94c30d56e9,gb1101e3267+5e0f808207,gb58c049af0+f03b321e39,gb89ab40317+fad15079a7,gc0af124501+a88dc73679,gcf25f946ba+ae791ba189,gd6cbbdb0b4+8d7f1baacb,gdb1c4ca869+16879ca1a6,gde0f65d7ad+11b49afd66,ge1ad929117+4e8d433789,ge278dab8ac+4d6e48c014,ge410e46f29+fad15079a7,gf5e32f922b+fcb1d3bbc8,gf618743f1b+8ff1364817,gf67bdafdda+fad15079a7,w.2025.17
LSST Data Management Base Package
|
Classes | |
class | FactorizedChi2Initialization |
class | FactorizedInitialization |
class | FactorizedWaveletInitialization |
Functions | |
tuple[np.ndarray, Box] | trim_morphology (np.ndarray morph, float bg_thresh=0, int padding=5) |
tuple[Box, np.ndarray|None] | init_monotonic_morph (np.ndarray detect, tuple[int, int] center, Box full_box, int padding=5, bool normalize=True, Monotonicity|None monotonicity=None, float thresh=0) |
np.ndarray | multifit_spectra (Observation observation, Sequence[Image] morphs, Image|None model=None) |
Variables | |
logger = logging.getLogger("scarlet.lite.initialization") | |
tuple[Box, np.ndarray | None] lsst.scarlet.lite.initialization.init_monotonic_morph | ( | np.ndarray | detect, |
tuple[int, int] | center, | ||
Box | full_box, | ||
int | padding = 5, | ||
bool | normalize = True, | ||
Monotonicity | None | monotonicity = None, | ||
float | thresh = 0 ) |
Initialize a morphology for a monotonic source Parameters ---------- detect: The 2D detection image contained in `full_box`. center: The center of the monotonic source. full_box: The bounding box of `detect`. padding: The number of pixels to grow the morphology in each direction. This can be useful if initializing a source with a kernel that is known to be narrower than the expected value of the source. normalize: Whether or not to normalize the morphology. monotonicity: When `monotonicity` is `None`, the component is initialized with only the monotonic pixels, otherwise the monotonicity operator is used to project the morphology to a monotonic solution. thresh: The threshold (fraction above the background) to use for trimming the morphology. Returns ------- bbox: The bounding box of the morphology. morph: The initialized morphology.
Definition at line 70 of file initialization.py.
np.ndarray lsst.scarlet.lite.initialization.multifit_spectra | ( | Observation | observation, |
Sequence[Image] | morphs, | ||
Image | None | model = None ) |
Fit the spectra of multiple components simultaneously Parameters ---------- observation: The class containing the observation data. morphs: The morphology of each component. model: An optional model for sources that are not factorized, and thus will not have their spectra fit. This model is subtracted from the data before fitting the other spectra. Returns ------- spectra: The spectrum for each component, in the same order as `morphs`.
Definition at line 149 of file initialization.py.
tuple[np.ndarray, Box] lsst.scarlet.lite.initialization.trim_morphology | ( | np.ndarray | morph, |
float | bg_thresh = 0, | ||
int | padding = 5 ) |
Trim the morphology up to pixels above a threshold Parameters ---------- morph: The morphology to be trimmed. bg_thresh: The morphology is trimmed to pixels above the threshold. padding: The amount to pad each side to allow the source to grow. Returns ------- morph: The trimmed morphology box: The box that contains the morphology.
Definition at line 40 of file initialization.py.
lsst.scarlet.lite.initialization.logger = logging.getLogger("scarlet.lite.initialization") |
Definition at line 37 of file initialization.py.