LSST Applications g0f08755f38+c89d42e150,g1635faa6d4+b6cf076a36,g1653933729+a8ce1bb630,g1a0ca8cf93+4c08b13bf7,g28da252d5a+f33f8200ef,g29321ee8c0+0187be18b1,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+e740673f1a,g5fbc88fb19+17cd334064,g7642f7d749+c89d42e150,g781aacb6e4+a8ce1bb630,g80478fca09+f8b2ab54e1,g82479be7b0+e2bd23ab8b,g858d7b2824+c89d42e150,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+065360aec4,gacf8899fa4+9553554aa7,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gbd46683f8f+ac57cbb13d,gc28159a63d+9634bc57db,gcf0d15dbbd+e37acf7834,gda3e153d99+c89d42e150,gda6a2b7d83+e37acf7834,gdaeeff99f8+1711a396fd,ge2409df99d+cb1e6652d6,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+02b11634a5,w.2024.45
LSST Data Management Base Package
|
Classes | |
class | FactorizedChi2Initialization |
class | FactorizedInitialization |
class | FactorizedWaveletInitialization |
Functions | |
tuple[np.ndarray, Box] | trim_morphology (np.ndarray morph, float bg_thresh=0, int padding=5) |
tuple[Box, np.ndarray|None] | init_monotonic_morph (np.ndarray detect, tuple[int, int] center, Box full_box, int padding=5, bool normalize=True, Monotonicity|None monotonicity=None, float thresh=0) |
np.ndarray | multifit_spectra (Observation observation, Sequence[Image] morphs, Image|None model=None) |
Variables | |
logger = logging.getLogger("scarlet.lite.initialization") | |
tuple[Box, np.ndarray | None] lsst.scarlet.lite.initialization.init_monotonic_morph | ( | np.ndarray | detect, |
tuple[int, int] | center, | ||
Box | full_box, | ||
int | padding = 5, | ||
bool | normalize = True, | ||
Monotonicity | None | monotonicity = None, | ||
float | thresh = 0 ) |
Initialize a morphology for a monotonic source Parameters ---------- detect: The 2D detection image contained in `full_box`. center: The center of the monotonic source. full_box: The bounding box of `detect`. padding: The number of pixels to grow the morphology in each direction. This can be useful if initializing a source with a kernel that is known to be narrower than the expected value of the source. normalize: Whether or not to normalize the morphology. monotonicity: When `monotonicity` is `None`, the component is initialized with only the monotonic pixels, otherwise the monotonicity operator is used to project the morphology to a monotonic solution. thresh: The threshold (fraction above the background) to use for trimming the morphology. Returns ------- bbox: The bounding box of the morphology. morph: The initialized morphology.
Definition at line 70 of file initialization.py.
np.ndarray lsst.scarlet.lite.initialization.multifit_spectra | ( | Observation | observation, |
Sequence[Image] | morphs, | ||
Image | None | model = None ) |
Fit the spectra of multiple components simultaneously Parameters ---------- observation: The class containing the observation data. morphs: The morphology of each component. model: An optional model for sources that are not factorized, and thus will not have their spectra fit. This model is subtracted from the data before fitting the other spectra. Returns ------- spectra: The spectrum for each component, in the same order as `morphs`.
Definition at line 149 of file initialization.py.
tuple[np.ndarray, Box] lsst.scarlet.lite.initialization.trim_morphology | ( | np.ndarray | morph, |
float | bg_thresh = 0, | ||
int | padding = 5 ) |
Trim the morphology up to pixels above a threshold Parameters ---------- morph: The morphology to be trimmed. bg_thresh: The morphology is trimmed to pixels above the threshold. padding: The amount to pad each side to allow the source to grow. Returns ------- morph: The trimmed morphology box: The box that contains the morphology.
Definition at line 40 of file initialization.py.
lsst.scarlet.lite.initialization.logger = logging.getLogger("scarlet.lite.initialization") |
Definition at line 37 of file initialization.py.