LSST Applications g0f08755f38+c89d42e150,g1635faa6d4+b6cf076a36,g1653933729+a8ce1bb630,g1a0ca8cf93+4c08b13bf7,g28da252d5a+f33f8200ef,g29321ee8c0+0187be18b1,g2bbee38e9b+9634bc57db,g2bc492864f+9634bc57db,g2cdde0e794+c2c89b37c4,g3156d2b45e+41e33cbcdc,g347aa1857d+9634bc57db,g35bb328faa+a8ce1bb630,g3a166c0a6a+9634bc57db,g3e281a1b8c+9f2c4e2fc3,g414038480c+077ccc18e7,g41af890bb2+e740673f1a,g5fbc88fb19+17cd334064,g7642f7d749+c89d42e150,g781aacb6e4+a8ce1bb630,g80478fca09+f8b2ab54e1,g82479be7b0+e2bd23ab8b,g858d7b2824+c89d42e150,g9125e01d80+a8ce1bb630,g9726552aa6+10f999ec6a,ga5288a1d22+065360aec4,gacf8899fa4+9553554aa7,gae0086650b+a8ce1bb630,gb58c049af0+d64f4d3760,gbd46683f8f+ac57cbb13d,gc28159a63d+9634bc57db,gcf0d15dbbd+e37acf7834,gda3e153d99+c89d42e150,gda6a2b7d83+e37acf7834,gdaeeff99f8+1711a396fd,ge2409df99d+cb1e6652d6,ge79ae78c31+9634bc57db,gf0baf85859+147a0692ba,gf3967379c6+02b11634a5,w.2024.45
LSST Data Management Base Package
|
Classes | |
class | CartesianFrame |
class | EllipseFrame |
class | EllipticalParametricComponent |
class | ParametricComponent |
Functions | |
np.ndarray | gaussian2d (np.ndarray params, EllipseFrame ellipse) |
np.ndarray | grad_gaussian2 (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
np.ndarray | circular_gaussian (Sequence[int] center, CartesianFrame frame, float sigma) |
np.ndarray | grad_circular_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame, float sigma) |
integrated_gaussian (np.ndarray params, CartesianFrame frame) | |
np.ndarray | grad_integrated_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame) |
np.ndarray | bounded_prox (np.ndarray params, np.ndarray proxmin, np.ndarray proxmax) |
np.ndarray | sersic (np.ndarray params, EllipseFrame ellipse) |
np.ndarray | grad_sersic (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
Variables | |
int | MIN_RADIUS = 1e-20 |
SQRT_PI_2 = np.sqrt(np.pi / 2) | |
SERSIC_B1 = gamma.ppf(0.5, 2) | |
np.ndarray lsst.scarlet.lite.models.parametric.bounded_prox | ( | np.ndarray | params, |
np.ndarray | proxmin, | ||
np.ndarray | proxmax ) |
A bounded proximal operator This function updates `params` in place. Parameters ---------- params: The array of parameters to constrain. proxmin: The array of minimum values for each parameter. proxmax: The array of maximum values for each parameter. Returns ------- result: The updated parameters.
Definition at line 535 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.circular_gaussian | ( | Sequence[int] | center, |
CartesianFrame | frame, | ||
float | sigma ) |
Model of a circularly symmetric Gaussian Parameters ---------- center: The center of the Gaussian. frame: The frame in which to generate the image of the circular Gaussian sigma: The standard deviation. Returns ------- result: The image of the circular Gaussian.
Definition at line 388 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.gaussian2d | ( | np.ndarray | params, |
EllipseFrame | ellipse ) |
Model of a 2D elliptical gaussian Parameters ---------- params: The parameters of the function. In this case there are none outside of the ellipticity ellipse: The ellipse parameters to scale the radius in all directions. Returns ------- result: The 2D guassian for the given ellipse parameters
Definition at line 335 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_circular_gaussian | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
CartesianFrame | frame, | ||
float | sigma ) |
Gradient of the the component model wrt the Gaussian morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. frame: The frame in which to generate the image of the circular Gaussian. sigma: The standard deviation.
Definition at line 411 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_gaussian2 | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
EllipseFrame | ellipse ) |
Gradient of the the component model wrt the Gaussian morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. ellipse: The ellipse parameters to scale the radius in all directions.
Definition at line 354 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_integrated_gaussian | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
CartesianFrame | frame ) |
Gradient of the component model wrt the Gaussian morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model parameters. params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. frame: The frame in which to generate the image of the circular Gaussian. Returns ------- result: The gradient of the component morphology.
Definition at line 478 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_sersic | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
EllipseFrame | ellipse ) |
Gradient of the component model wrt the morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. ellipse: The ellipse parameters to scale the radius in all directions.
Definition at line 589 of file parametric.py.
lsst.scarlet.lite.models.parametric.integrated_gaussian | ( | np.ndarray | params, |
CartesianFrame | frame ) |
Model of a circularly symmetric Gaussian integrated over pixels This differs from `circularGaussian` because the gaussian function is integrated over each pixel to replicate the pixelated image version of a Gaussian function. Parameters ---------- params: The center of the Gaussian. frame: The frame in which to generate the image of the circular Gaussian Returns ------- result: The image of the circular Gaussian.
Definition at line 448 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.sersic | ( | np.ndarray | params, |
EllipseFrame | ellipse ) |
Generate a Sersic Model. Parameters ---------- params: The parameters of the function. In this case the only parameter is the sersic index ``n``. ellipse: The ellipse parameters to scale the radius in all directions. Returns ------- result: The model for the given ellipse parameters
Definition at line 561 of file parametric.py.
int lsst.scarlet.lite.models.parametric.MIN_RADIUS = 1e-20 |
Definition at line 51 of file parametric.py.
lsst.scarlet.lite.models.parametric.SERSIC_B1 = gamma.ppf(0.5, 2) |
Definition at line 57 of file parametric.py.
lsst.scarlet.lite.models.parametric.SQRT_PI_2 = np.sqrt(np.pi / 2) |
Definition at line 54 of file parametric.py.