|
LSST Applications g00d0e8bbd7+8c5ae1fdc5,g013ef56533+603670b062,g083dd6704c+2e189452a7,g199a45376c+0ba108daf9,g1c5cce2383+bc9f6103a4,g1fd858c14a+cd69ed4fc1,g210f2d0738+c4742f2e9e,g262e1987ae+612fa42d85,g29ae962dfc+83d129e820,g2cef7863aa+aef1011c0b,g35bb328faa+8c5ae1fdc5,g3fd5ace14f+5eaa884f2a,g47891489e3+e32160a944,g53246c7159+8c5ae1fdc5,g5b326b94bb+dcc56af22d,g64539dfbff+c4742f2e9e,g67b6fd64d1+e32160a944,g74acd417e5+c122e1277d,g786e29fd12+668abc6043,g87389fa792+8856018cbb,g88cb488625+47d24e4084,g89139ef638+e32160a944,g8d7436a09f+d14b4ff40a,g8ea07a8fe4+b212507b11,g90f42f885a+e1755607f3,g97be763408+34be90ab8c,g98df359435+ec1fa61bf1,ga2180abaac+8c5ae1fdc5,ga9e74d7ce9+43ac651df0,gbf99507273+8c5ae1fdc5,gc2a301910b+c4742f2e9e,gca7fc764a6+e32160a944,gd7ef33dd92+e32160a944,gdab6d2f7ff+c122e1277d,gdb1e2cdc75+1b18322db8,ge410e46f29+e32160a944,ge41e95a9f2+c4742f2e9e,geaed405ab2+0d91c11c6d,w.2025.44
LSST Data Management Base Package
|
Classes | |
| class | CartesianFrame |
| class | EllipseFrame |
| class | EllipticalParametricComponent |
| class | ParametricComponent |
Functions | |
| np.ndarray | gaussian2d (np.ndarray params, EllipseFrame ellipse) |
| np.ndarray | grad_gaussian2 (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
| np.ndarray | circular_gaussian (Sequence[int] center, CartesianFrame frame, float sigma) |
| np.ndarray | grad_circular_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame, float sigma) |
| integrated_gaussian (np.ndarray params, CartesianFrame frame) | |
| np.ndarray | grad_integrated_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame) |
| np.ndarray | bounded_prox (np.ndarray params, np.ndarray proxmin, np.ndarray proxmax) |
| np.ndarray | sersic (np.ndarray params, EllipseFrame ellipse) |
| np.ndarray | grad_sersic (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
Variables | |
| int | MIN_RADIUS = 1e-20 |
| SQRT_PI_2 = np.sqrt(np.pi / 2) | |
| SERSIC_B1 = gamma.ppf(0.5, 2) | |
| np.ndarray lsst.scarlet.lite.models.parametric.bounded_prox | ( | np.ndarray | params, |
| np.ndarray | proxmin, | ||
| np.ndarray | proxmax ) |
A bounded proximal operator
This function updates `params` in place.
Parameters
----------
params:
The array of parameters to constrain.
proxmin:
The array of minimum values for each parameter.
proxmax:
The array of maximum values for each parameter.
Returns
-------
result:
The updated parameters.
Definition at line 540 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.circular_gaussian | ( | Sequence[int] | center, |
| CartesianFrame | frame, | ||
| float | sigma ) |
Model of a circularly symmetric Gaussian
Parameters
----------
center:
The center of the Gaussian.
frame:
The frame in which to generate the image of the circular Gaussian
sigma:
The standard deviation.
Returns
-------
result:
The image of the circular Gaussian.
Definition at line 393 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.gaussian2d | ( | np.ndarray | params, |
| EllipseFrame | ellipse ) |
Model of a 2D elliptical gaussian
Parameters
----------
params:
The parameters of the function.
In this case there are none outside of the ellipticity
ellipse:
The ellipse parameters to scale the radius in all directions.
Returns
-------
result:
The 2D guassian for the given ellipse parameters
Definition at line 340 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_circular_gaussian | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| CartesianFrame | frame, | ||
| float | sigma ) |
Gradient of the the component model wrt the Gaussian
morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
frame:
The frame in which to generate the image of the circular Gaussian.
sigma:
The standard deviation.
Definition at line 416 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_gaussian2 | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| EllipseFrame | ellipse ) |
Gradient of the the component model wrt the Gaussian
morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
ellipse:
The ellipse parameters to scale the radius in all directions.
Definition at line 359 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_integrated_gaussian | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| CartesianFrame | frame ) |
Gradient of the component model wrt the Gaussian
morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model parameters.
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
frame:
The frame in which to generate the image of the circular Gaussian.
Returns
-------
result:
The gradient of the component morphology.
Definition at line 483 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_sersic | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| EllipseFrame | ellipse ) |
Gradient of the component model wrt the morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
ellipse:
The ellipse parameters to scale the radius in all directions.
Definition at line 594 of file parametric.py.
| lsst.scarlet.lite.models.parametric.integrated_gaussian | ( | np.ndarray | params, |
| CartesianFrame | frame ) |
Model of a circularly symmetric Gaussian integrated over pixels
This differs from `circularGaussian` because the gaussian function
is integrated over each pixel to replicate the pixelated image
version of a Gaussian function.
Parameters
----------
params:
The center of the Gaussian.
frame:
The frame in which to generate the image of the circular Gaussian
Returns
-------
result:
The image of the circular Gaussian.
Definition at line 453 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.sersic | ( | np.ndarray | params, |
| EllipseFrame | ellipse ) |
Generate a Sersic Model.
Parameters
----------
params:
The parameters of the function.
In this case the only parameter is the sersic index ``n``.
ellipse:
The ellipse parameters to scale the radius in all directions.
Returns
-------
result:
The model for the given ellipse parameters
Definition at line 566 of file parametric.py.
| int lsst.scarlet.lite.models.parametric.MIN_RADIUS = 1e-20 |
Definition at line 56 of file parametric.py.
| lsst.scarlet.lite.models.parametric.SERSIC_B1 = gamma.ppf(0.5, 2) |
Definition at line 62 of file parametric.py.
| lsst.scarlet.lite.models.parametric.SQRT_PI_2 = np.sqrt(np.pi / 2) |
Definition at line 59 of file parametric.py.