|
LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
|
Classes | |
| class | CartesianFrame |
| class | EllipseFrame |
| class | EllipticalParametricComponent |
| class | ParametricComponent |
Functions | |
| np.ndarray | gaussian2d (np.ndarray params, EllipseFrame ellipse) |
| np.ndarray | grad_gaussian2 (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
| np.ndarray | circular_gaussian (Sequence[int] center, CartesianFrame frame, float sigma) |
| np.ndarray | grad_circular_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame, float sigma) |
| integrated_gaussian (np.ndarray params, CartesianFrame frame) | |
| np.ndarray | grad_integrated_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame) |
| np.ndarray | bounded_prox (np.ndarray params, np.ndarray proxmin, np.ndarray proxmax) |
| np.ndarray | sersic (np.ndarray params, EllipseFrame ellipse) |
| np.ndarray | grad_sersic (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
Variables | |
| int | MIN_RADIUS = 1e-20 |
| SQRT_PI_2 = np.sqrt(np.pi / 2) | |
| SERSIC_B1 = gamma.ppf(0.5, 2) | |
| np.ndarray lsst.scarlet.lite.models.parametric.bounded_prox | ( | np.ndarray | params, |
| np.ndarray | proxmin, | ||
| np.ndarray | proxmax ) |
A bounded proximal operator
This function updates `params` in place.
Parameters
----------
params:
The array of parameters to constrain.
proxmin:
The array of minimum values for each parameter.
proxmax:
The array of maximum values for each parameter.
Returns
-------
result:
The updated parameters.
Definition at line 540 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.circular_gaussian | ( | Sequence[int] | center, |
| CartesianFrame | frame, | ||
| float | sigma ) |
Model of a circularly symmetric Gaussian
Parameters
----------
center:
The center of the Gaussian.
frame:
The frame in which to generate the image of the circular Gaussian
sigma:
The standard deviation.
Returns
-------
result:
The image of the circular Gaussian.
Definition at line 393 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.gaussian2d | ( | np.ndarray | params, |
| EllipseFrame | ellipse ) |
Model of a 2D elliptical gaussian
Parameters
----------
params:
The parameters of the function.
In this case there are none outside of the ellipticity
ellipse:
The ellipse parameters to scale the radius in all directions.
Returns
-------
result:
The 2D guassian for the given ellipse parameters
Definition at line 340 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_circular_gaussian | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| CartesianFrame | frame, | ||
| float | sigma ) |
Gradient of the the component model wrt the Gaussian
morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
frame:
The frame in which to generate the image of the circular Gaussian.
sigma:
The standard deviation.
Definition at line 416 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_gaussian2 | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| EllipseFrame | ellipse ) |
Gradient of the the component model wrt the Gaussian
morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
ellipse:
The ellipse parameters to scale the radius in all directions.
Definition at line 359 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_integrated_gaussian | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| CartesianFrame | frame ) |
Gradient of the component model wrt the Gaussian
morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model parameters.
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
frame:
The frame in which to generate the image of the circular Gaussian.
Returns
-------
result:
The gradient of the component morphology.
Definition at line 483 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.grad_sersic | ( | np.ndarray | input_grad, |
| np.ndarray | params, | ||
| np.ndarray | morph, | ||
| np.ndarray | spectrum, | ||
| EllipseFrame | ellipse ) |
Gradient of the component model wrt the morphology parameters
Parameters
----------
input_grad:
Gradient of the likelihood wrt the component model
params:
The parameters of the morphology.
morph:
The model of the morphology.
spectrum:
The model of the spectrum.
ellipse:
The ellipse parameters to scale the radius in all directions.
Definition at line 594 of file parametric.py.
| lsst.scarlet.lite.models.parametric.integrated_gaussian | ( | np.ndarray | params, |
| CartesianFrame | frame ) |
Model of a circularly symmetric Gaussian integrated over pixels
This differs from `circularGaussian` because the gaussian function
is integrated over each pixel to replicate the pixelated image
version of a Gaussian function.
Parameters
----------
params:
The center of the Gaussian.
frame:
The frame in which to generate the image of the circular Gaussian
Returns
-------
result:
The image of the circular Gaussian.
Definition at line 453 of file parametric.py.
| np.ndarray lsst.scarlet.lite.models.parametric.sersic | ( | np.ndarray | params, |
| EllipseFrame | ellipse ) |
Generate a Sersic Model.
Parameters
----------
params:
The parameters of the function.
In this case the only parameter is the sersic index ``n``.
ellipse:
The ellipse parameters to scale the radius in all directions.
Returns
-------
result:
The model for the given ellipse parameters
Definition at line 566 of file parametric.py.
| int lsst.scarlet.lite.models.parametric.MIN_RADIUS = 1e-20 |
Definition at line 56 of file parametric.py.
| lsst.scarlet.lite.models.parametric.SERSIC_B1 = gamma.ppf(0.5, 2) |
Definition at line 62 of file parametric.py.
| lsst.scarlet.lite.models.parametric.SQRT_PI_2 = np.sqrt(np.pi / 2) |
Definition at line 59 of file parametric.py.