LSST Applications g0d33ba9806+b932483eba,g0fba68d861+d53f2a615d,g1e78f5e6d3+1e869f36eb,g1ec0fe41b4+f536777771,g1fd858c14a+d5f4961c99,g35bb328faa+fcb1d3bbc8,g4af146b050+2e821d8f6b,g4d2262a081+b02c98aa00,g53246c7159+fcb1d3bbc8,g5a012ec0e7+b20b785ecb,g60b5630c4e+b932483eba,g67b6fd64d1+4086c0989b,g78460c75b0+2f9a1b4bcd,g786e29fd12+cf7ec2a62a,g7b71ed6315+fcb1d3bbc8,g87b7deb4dc+7d8c31d03d,g8852436030+a639f189fc,g89139ef638+4086c0989b,g9125e01d80+fcb1d3bbc8,g94187f82dc+b932483eba,g989de1cb63+4086c0989b,g9f33ca652e+898eabdf38,g9f7030ddb1+b068313d7a,ga2b97cdc51+b932483eba,ga44b1db4f6+2bd830756e,gabe3b4be73+1e0a283bba,gabf8522325+fa80ff7197,gb1101e3267+f4f1608365,gb58c049af0+f03b321e39,gb89ab40317+4086c0989b,gcf25f946ba+a639f189fc,gd6cbbdb0b4+af3c3595f5,gd9a9a58781+fcb1d3bbc8,gde0f65d7ad+4078fef7e5,ge278dab8ac+d65b3c2b70,ge410e46f29+4086c0989b,gf67bdafdda+4086c0989b,gfe06eef73a+6e83fc67a4,v29.0.0.rc5
LSST Data Management Base Package
|
Classes | |
class | CartesianFrame |
class | EllipseFrame |
class | EllipticalParametricComponent |
class | ParametricComponent |
Functions | |
np.ndarray | gaussian2d (np.ndarray params, EllipseFrame ellipse) |
np.ndarray | grad_gaussian2 (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
np.ndarray | circular_gaussian (Sequence[int] center, CartesianFrame frame, float sigma) |
np.ndarray | grad_circular_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame, float sigma) |
integrated_gaussian (np.ndarray params, CartesianFrame frame) | |
np.ndarray | grad_integrated_gaussian (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, CartesianFrame frame) |
np.ndarray | bounded_prox (np.ndarray params, np.ndarray proxmin, np.ndarray proxmax) |
np.ndarray | sersic (np.ndarray params, EllipseFrame ellipse) |
np.ndarray | grad_sersic (np.ndarray input_grad, np.ndarray params, np.ndarray morph, np.ndarray spectrum, EllipseFrame ellipse) |
Variables | |
int | MIN_RADIUS = 1e-20 |
SQRT_PI_2 = np.sqrt(np.pi / 2) | |
SERSIC_B1 = gamma.ppf(0.5, 2) | |
np.ndarray lsst.scarlet.lite.models.parametric.bounded_prox | ( | np.ndarray | params, |
np.ndarray | proxmin, | ||
np.ndarray | proxmax ) |
A bounded proximal operator This function updates `params` in place. Parameters ---------- params: The array of parameters to constrain. proxmin: The array of minimum values for each parameter. proxmax: The array of maximum values for each parameter. Returns ------- result: The updated parameters.
Definition at line 535 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.circular_gaussian | ( | Sequence[int] | center, |
CartesianFrame | frame, | ||
float | sigma ) |
Model of a circularly symmetric Gaussian Parameters ---------- center: The center of the Gaussian. frame: The frame in which to generate the image of the circular Gaussian sigma: The standard deviation. Returns ------- result: The image of the circular Gaussian.
Definition at line 388 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.gaussian2d | ( | np.ndarray | params, |
EllipseFrame | ellipse ) |
Model of a 2D elliptical gaussian Parameters ---------- params: The parameters of the function. In this case there are none outside of the ellipticity ellipse: The ellipse parameters to scale the radius in all directions. Returns ------- result: The 2D guassian for the given ellipse parameters
Definition at line 335 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_circular_gaussian | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
CartesianFrame | frame, | ||
float | sigma ) |
Gradient of the the component model wrt the Gaussian morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. frame: The frame in which to generate the image of the circular Gaussian. sigma: The standard deviation.
Definition at line 411 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_gaussian2 | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
EllipseFrame | ellipse ) |
Gradient of the the component model wrt the Gaussian morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. ellipse: The ellipse parameters to scale the radius in all directions.
Definition at line 354 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_integrated_gaussian | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
CartesianFrame | frame ) |
Gradient of the component model wrt the Gaussian morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model parameters. params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. frame: The frame in which to generate the image of the circular Gaussian. Returns ------- result: The gradient of the component morphology.
Definition at line 478 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.grad_sersic | ( | np.ndarray | input_grad, |
np.ndarray | params, | ||
np.ndarray | morph, | ||
np.ndarray | spectrum, | ||
EllipseFrame | ellipse ) |
Gradient of the component model wrt the morphology parameters Parameters ---------- input_grad: Gradient of the likelihood wrt the component model params: The parameters of the morphology. morph: The model of the morphology. spectrum: The model of the spectrum. ellipse: The ellipse parameters to scale the radius in all directions.
Definition at line 589 of file parametric.py.
lsst.scarlet.lite.models.parametric.integrated_gaussian | ( | np.ndarray | params, |
CartesianFrame | frame ) |
Model of a circularly symmetric Gaussian integrated over pixels This differs from `circularGaussian` because the gaussian function is integrated over each pixel to replicate the pixelated image version of a Gaussian function. Parameters ---------- params: The center of the Gaussian. frame: The frame in which to generate the image of the circular Gaussian Returns ------- result: The image of the circular Gaussian.
Definition at line 448 of file parametric.py.
np.ndarray lsst.scarlet.lite.models.parametric.sersic | ( | np.ndarray | params, |
EllipseFrame | ellipse ) |
Generate a Sersic Model. Parameters ---------- params: The parameters of the function. In this case the only parameter is the sersic index ``n``. ellipse: The ellipse parameters to scale the radius in all directions. Returns ------- result: The model for the given ellipse parameters
Definition at line 561 of file parametric.py.
int lsst.scarlet.lite.models.parametric.MIN_RADIUS = 1e-20 |
Definition at line 51 of file parametric.py.
lsst.scarlet.lite.models.parametric.SERSIC_B1 = gamma.ppf(0.5, 2) |
Definition at line 57 of file parametric.py.
lsst.scarlet.lite.models.parametric.SQRT_PI_2 = np.sqrt(np.pi / 2) |
Definition at line 54 of file parametric.py.