LSST Applications g00274db5b6+edbf708997,g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+1d4b6db739,g262e1987ae+f4d9505c4f,g29ae962dfc+7156fb1a53,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3e17d7035e+5b3adc59f5,g3fd5ace14f+852fa6fbcb,g47891489e3+6dc8069a4c,g53246c7159+edbf708997,g64539dfbff+9f17e571f4,g67b6fd64d1+6dc8069a4c,g74acd417e5+ae494d68d9,g786e29fd12+af89c03590,g7ae74a0b1c+a25e60b391,g7aefaa3e3d+536efcc10a,g7cc15d900a+d121454f8d,g87389fa792+a4172ec7da,g89139ef638+6dc8069a4c,g8d7436a09f+28c28d8d6d,g8ea07a8fe4+db21c37724,g92c671f44c+9f17e571f4,g98df359435+b2e6376b13,g99af87f6a8+b0f4ad7b8d,gac66b60396+966efe6077,gb88ae4c679+7dec8f19df,gbaa8f7a6c5+38b34f4976,gbf99507273+edbf708997,gc24b5d6ed1+9f17e571f4,gca7fc764a6+6dc8069a4c,gcc769fe2a4+97d0256649,gd7ef33dd92+6dc8069a4c,gdab6d2f7ff+ae494d68d9,gdbb4c4dda9+9f17e571f4,ge410e46f29+6dc8069a4c,geaed405ab2+e194be0d2b,w.2025.47
LSST Data Management Base Package
Loading...
Searching...
No Matches
priorsContinued.py
Go to the documentation of this file.
1#!/usr/bin/env python
2#
3# LSST Data Management System
4# Copyright 2008-2013 LSST Corporation.
5#
6# This product includes software developed by the
7# LSST Project (http://www.lsst.org/).
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the LSST License Statement and
20# the GNU General Public License along with this program. If not,
21# see <http://www.lsstcorp.org/LegalNotices/>.
22#
23
24__all__ = ("fitMixture", "SemiEmpiricalPriorConfig",
25 "SoftenedLinearPriorControl")
26
27import numpy as np
28
29from lsst.pex.config import makeConfigClass
30from lsst.utils import continueClass
31
32from .._modelfitLib import (Mixture, SemiEmpiricalPriorControl, SemiEmpiricalPrior,
33 SoftenedLinearPriorControl, SoftenedLinearPrior,
34 MixturePrior)
35
36
37SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)
38
39SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)
40
41
42@continueClass # noqa: F811 (FIXME: remove for py 3.8+)
43class SemiEmpiricalPrior: # noqa: F811
44
45 ConfigClass = SemiEmpiricalPriorConfig
46
47
48@continueClass # noqa: F811 (FIXME: remove for py 3.8+)
49class SoftenedLinearPrior: # noqa: F811
50
51 ConfigClass = SoftenedLinearPriorConfig
52
53
54def fitMixture(data, nComponents, minFactor=0.25, maxFactor=4.0,
55 nIterations=20, df=float("inf")):
56 """Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
57 returing a ``MixturePrior`` object.
58
59 Parameters
60 ----------
61 data : numpy.ndarray
62 array of data points to fit; shape=(N,3)
63 nComponents : int
64 number of components in the mixture distribution
65 minFactor : float
66 ellipticity variance of the smallest component in the initial mixture,
67 relative to the measured variance
68 maxFactor : float
69 ellipticity variance of the largest component in the initial mixture,
70 relative to the measured variance
71 nIterations : int
72 number of expectation-maximization update iterations
73 df : float
74 number of degrees of freedom for component Student's T distributions
75 (inf=Gaussian).
76 """
77 components = Mixture.ComponentList()
78 rMu = data[:, 2].mean()
79 rSigma = data[:, 2].var()
80 eSigma = 0.5*(data[:, 0].var() + data[:, 1].var())
81 mu = np.array([0.0, 0.0, rMu], dtype=float)
82 baseSigma = np.array([[eSigma, 0.0, 0.0],
83 [0.0, eSigma, 0.0],
84 [0.0, 0.0, rSigma]])
85 for factor in np.linspace(minFactor, maxFactor, nComponents):
86 sigma = baseSigma.copy()
87 sigma[:2, :2] *= factor
88 components.append(Mixture.Component(1.0, mu, sigma))
89 mixture = Mixture(3, components, df)
90 restriction = MixturePrior.getUpdateRestriction()
91 for i in range(nIterations):
92 mixture.updateEM(data, restriction)
93 return mixture
A weighted Student's T or Gaussian distribution used as a component in a Mixture.
Definition Mixture.h:47
fitMixture(data, nComponents, minFactor=0.25, maxFactor=4.0, nIterations=20, df=float("inf"))