LSST Applications g00d0e8bbd7+edbf708997,g199a45376c+5137f08352,g1fd858c14a+48cd4dd530,g228ff663f5+2051e4e242,g262e1987ae+9c6f24d2e3,g29ae962dfc+03663621e0,g2cef7863aa+73c82f25e4,g35bb328faa+edbf708997,g3fd5ace14f+8c4d25a1ce,g47891489e3+27ba970c8a,g53246c7159+edbf708997,g5b326b94bb+db962c32ee,g64539dfbff+d237af7fd9,g67b6fd64d1+27ba970c8a,g74acd417e5+8234f56c0c,g786e29fd12+af89c03590,g87389fa792+a4172ec7da,g88cb488625+6878ed1c5e,g89139ef638+27ba970c8a,g8d7436a09f+f76ea57dde,g8ea07a8fe4+79658f16ab,g90f42f885a+6577634e1f,g97be763408+494f77a6c4,g98df359435+1750ea0126,g9b50b81019+d8f85438e7,ga2180abaac+edbf708997,ga9e74d7ce9+128cc68277,gad4c79568f+321c5e11c3,gbf99507273+edbf708997,gc2a301910b+d237af7fd9,gca7fc764a6+27ba970c8a,gcedae5159b+afaec0eb3d,gd7ef33dd92+27ba970c8a,gdab6d2f7ff+8234f56c0c,gdbb4c4dda9+d237af7fd9,ge410e46f29+27ba970c8a,ge41e95a9f2+d237af7fd9,geaed405ab2+062dfc8cdc,w.2025.45
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.meas.modelfit.priors.priorsContinued Namespace Reference

Classes

class  SemiEmpiricalPrior
 
class  SoftenedLinearPrior
 

Functions

 fitMixture (data, nComponents, minFactor=0.25, maxFactor=4.0, nIterations=20, df=float("inf"))
 

Variables

 SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)
 
 SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)
 

Function Documentation

◆ fitMixture()

lsst.meas.modelfit.priors.priorsContinued.fitMixture ( data,
nComponents,
minFactor = 0.25,
maxFactor = 4.0,
nIterations = 20,
df = float("inf") )
Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
returing a ``MixturePrior`` object.

Parameters
----------
data : numpy.ndarray
    array of data points to fit; shape=(N,3)
nComponents : int
    number of components in the mixture distribution
minFactor : float
    ellipticity variance of the smallest component in the initial mixture,
    relative to the measured variance
maxFactor : float
    ellipticity variance of the largest component in the initial mixture,
    relative to the measured variance
nIterations : int
    number of expectation-maximization update iterations
df : float
    number of degrees of freedom for component Student's T distributions
    (inf=Gaussian).

Definition at line 54 of file priorsContinued.py.

55 nIterations=20, df=float("inf")):
56 """Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
57 returing a ``MixturePrior`` object.
58
59 Parameters
60 ----------
61 data : numpy.ndarray
62 array of data points to fit; shape=(N,3)
63 nComponents : int
64 number of components in the mixture distribution
65 minFactor : float
66 ellipticity variance of the smallest component in the initial mixture,
67 relative to the measured variance
68 maxFactor : float
69 ellipticity variance of the largest component in the initial mixture,
70 relative to the measured variance
71 nIterations : int
72 number of expectation-maximization update iterations
73 df : float
74 number of degrees of freedom for component Student's T distributions
75 (inf=Gaussian).
76 """
77 components = Mixture.ComponentList()
78 rMu = data[:, 2].mean()
79 rSigma = data[:, 2].var()
80 eSigma = 0.5*(data[:, 0].var() + data[:, 1].var())
81 mu = np.array([0.0, 0.0, rMu], dtype=float)
82 baseSigma = np.array([[eSigma, 0.0, 0.0],
83 [0.0, eSigma, 0.0],
84 [0.0, 0.0, rSigma]])
85 for factor in np.linspace(minFactor, maxFactor, nComponents):
86 sigma = baseSigma.copy()
87 sigma[:2, :2] *= factor
88 components.append(Mixture.Component(1.0, mu, sigma))
89 mixture = Mixture(3, components, df)
90 restriction = MixturePrior.getUpdateRestriction()
91 for i in range(nIterations):
92 mixture.updateEM(data, restriction)
93 return mixture

Variable Documentation

◆ SemiEmpiricalPriorConfig

lsst.meas.modelfit.priors.priorsContinued.SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)

Definition at line 37 of file priorsContinued.py.

◆ SoftenedLinearPriorConfig

lsst.meas.modelfit.priors.priorsContinued.SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)

Definition at line 39 of file priorsContinued.py.