LSST Applications g04e9c324dd+8c5ae1fdc5,g0644efc3f0+09e1198e5e,g123d84c11c+8c5ae1fdc5,g1ec0fe41b4+6ec6b74de1,g1fd858c14a+3ffa984376,g3533f9d6cb+09e1198e5e,g35bb328faa+8c5ae1fdc5,g35ef7ab7cf+266198310b,g495290aba3+89f6b6dd9e,g53246c7159+8c5ae1fdc5,g60b5630c4e+09e1198e5e,g663da51e9b+8d6ae63d30,g6735e52a0d+29de3d959a,g67b6fd64d1+57193d00fb,g6c75a56628+7a48c497dd,g78460c75b0+7e33a9eb6d,g786e29fd12+668abc6043,g844c57033c+03ddc13274,g8852436030+08a5a9c358,g89139ef638+57193d00fb,g989de1cb63+57193d00fb,g9f33ca652e+945cd5ea73,ga1e959baac+5fbc491aed,ga2f891cd6c+09e1198e5e,gabe3b4be73+8856018cbb,gabf8522325+cc757f8247,gac2eed3f23+57193d00fb,gb1101e3267+9443485152,gb89ab40317+57193d00fb,gcf25f946ba+08a5a9c358,gd107969129+a4cb2c4ed1,gd6cbbdb0b4+8e46defd2a,gde0f65d7ad+31a6a3d176,ge278dab8ac+2322f1d6ea,ge410e46f29+57193d00fb,gf30d85a44d+f9c24d3818,gf5e32f922b+8c5ae1fdc5,gff02db199a+041df0bfe7,w.2025.28
LSST Data Management Base Package
Loading...
Searching...
No Matches
lsst.meas.modelfit.priors.priorsContinued Namespace Reference

Classes

class  SemiEmpiricalPrior
 
class  SoftenedLinearPrior
 

Functions

 fitMixture (data, nComponents, minFactor=0.25, maxFactor=4.0, nIterations=20, df=float("inf"))
 

Variables

 SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)
 
 SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)
 

Function Documentation

◆ fitMixture()

lsst.meas.modelfit.priors.priorsContinued.fitMixture ( data,
nComponents,
minFactor = 0.25,
maxFactor = 4.0,
nIterations = 20,
df = float("inf") )
Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
returing a ``MixturePrior`` object.

Parameters
----------
data : numpy.ndarray
    array of data points to fit; shape=(N,3)
nComponents : int
    number of components in the mixture distribution
minFactor : float
    ellipticity variance of the smallest component in the initial mixture,
    relative to the measured variance
maxFactor : float
    ellipticity variance of the largest component in the initial mixture,
    relative to the measured variance
nIterations : int
    number of expectation-maximization update iterations
df : float
    number of degrees of freedom for component Student's T distributions
    (inf=Gaussian).

Definition at line 54 of file priorsContinued.py.

55 nIterations=20, df=float("inf")):
56 """Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
57 returing a ``MixturePrior`` object.
58
59 Parameters
60 ----------
61 data : numpy.ndarray
62 array of data points to fit; shape=(N,3)
63 nComponents : int
64 number of components in the mixture distribution
65 minFactor : float
66 ellipticity variance of the smallest component in the initial mixture,
67 relative to the measured variance
68 maxFactor : float
69 ellipticity variance of the largest component in the initial mixture,
70 relative to the measured variance
71 nIterations : int
72 number of expectation-maximization update iterations
73 df : float
74 number of degrees of freedom for component Student's T distributions
75 (inf=Gaussian).
76 """
77 components = Mixture.ComponentList()
78 rMu = data[:, 2].mean()
79 rSigma = data[:, 2].var()
80 eSigma = 0.5*(data[:, 0].var() + data[:, 1].var())
81 mu = np.array([0.0, 0.0, rMu], dtype=float)
82 baseSigma = np.array([[eSigma, 0.0, 0.0],
83 [0.0, eSigma, 0.0],
84 [0.0, 0.0, rSigma]])
85 for factor in np.linspace(minFactor, maxFactor, nComponents):
86 sigma = baseSigma.copy()
87 sigma[:2, :2] *= factor
88 components.append(Mixture.Component(1.0, mu, sigma))
89 mixture = Mixture(3, components, df)
90 restriction = MixturePrior.getUpdateRestriction()
91 for i in range(nIterations):
92 mixture.updateEM(data, restriction)
93 return mixture

Variable Documentation

◆ SemiEmpiricalPriorConfig

lsst.meas.modelfit.priors.priorsContinued.SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)

Definition at line 37 of file priorsContinued.py.

◆ SoftenedLinearPriorConfig

lsst.meas.modelfit.priors.priorsContinued.SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)

Definition at line 39 of file priorsContinued.py.