Loading [MathJax]/extensions/tex2jax.js
LSST Applications g0485b4d2cb+c8d56b10d4,g0fba68d861+c513f10703,g1ec0fe41b4+3e153770da,g1fd858c14a+fca1f36da6,g2440f9efcc+8c5ae1fdc5,g35bb328faa+8c5ae1fdc5,g4d2262a081+73db4aee98,g53246c7159+8c5ae1fdc5,g56a49b3a55+8699aedcf1,g60b5630c4e+0e13f5d8e4,g65f11fe441+d5838b1573,g67b6fd64d1+035c836e50,g6ba5f4ee81+5218eae6c4,g78460c75b0+7e33a9eb6d,g786e29fd12+668abc6043,g8352419a5c+8c5ae1fdc5,g8852436030+5e76f8a839,g89139ef638+035c836e50,g94187f82dc+0e13f5d8e4,g989de1cb63+035c836e50,g9d31334357+0e13f5d8e4,g9f33ca652e+190f04d267,gabe3b4be73+8856018cbb,gabf8522325+21619da9f3,gb1101e3267+e14fd59f59,gb89ab40317+035c836e50,gc91f06edcd+a47578e525,gcef618a4dd+0e13f5d8e4,gcf25f946ba+5e76f8a839,gd6cbbdb0b4+958adf5c1f,gdb8242c116+18fb55f1cc,gde0f65d7ad+fe97e93be4,ge278dab8ac+83c63f4893,ge410e46f29+035c836e50,gf35d7ec915+97dd712d81,gf5e32f922b+8c5ae1fdc5,gf67bdafdda+035c836e50,gf6800124b1+a9633b82fa,w.2025.19
LSST Data Management Base Package
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Modules Pages
polynomialTransform.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 *
4 * This product includes software developed by the
5 * LSST Project (http://www.lsst.org/).
6 * See the COPYRIGHT file
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22#include "pybind11/pybind11.h"
24#include "pybind11/stl.h"
25
26#include <memory>
27
28#include "ndarray/pybind11.h"
29
33
34namespace py = pybind11;
35using namespace pybind11::literals;
36
37namespace lsst {
38namespace meas {
39namespace astrom {
40
41namespace {
42
43void declarePolynomialTransform(lsst::cpputils::python::WrapperCollection &wrappers) {
44 using PyPolynomialTransform = py::class_<PolynomialTransform, std::shared_ptr<PolynomialTransform>>;
45
46 wrappers.wrapType(PyPolynomialTransform(wrappers.module, "PolynomialTransform"), [](auto &mod, auto &cls) {
47 cls.def(py::init<ndarray::Array<double const, 2, 0> const &,
48 ndarray::Array<double const, 2, 0> const &>(),
49 "xCoeffs"_a, "yCoeffs"_a);
50 cls.def(py::init<PolynomialTransform const &>(), "other"_a);
51
52 cls.def_static("convert",
53 (PolynomialTransform(*)(ScaledPolynomialTransform const &)) &PolynomialTransform::convert,
54 "other"_a);
55 cls.def_static("convert",
56 (PolynomialTransform(*)(SipForwardTransform const &)) &PolynomialTransform::convert,
57 "other"_a);
58 cls.def_static("convert",
59 (PolynomialTransform(*)(SipReverseTransform const &)) &PolynomialTransform::convert,
60 "other"_a);
61
62 cls.def("__call__", &PolynomialTransform::operator(), "in"_a);
63
64 cls.def("getOrder", &PolynomialTransform::getOrder);
65 cls.def("getXCoeffs", &PolynomialTransform::getXCoeffs);
66 cls.def("getYCoeffs", &PolynomialTransform::getYCoeffs);
67 cls.def("linearize", &PolynomialTransform::linearize);
68 });
69}
70
71void declareScaledPolynomialTransform(lsst::cpputils::python::WrapperCollection &wrappers) {
72 using PyClass = py::class_<ScaledPolynomialTransform, std::shared_ptr<ScaledPolynomialTransform>>;
73
74 wrappers.wrapType(PyClass(wrappers.module, "ScaledPolynomialTransform"), [](auto &mod, auto &cls) {
75 cls.def(py::init<PolynomialTransform const &, geom::AffineTransform const &,
76 geom::AffineTransform const &>(),
77 "poly"_a, "inputScaling"_a, "outputScalingInverse"_a);
78 cls.def(py::init<ScaledPolynomialTransform const &>(), "other"_a);
79
80 cls.def_static(
81 "convert",
82 (ScaledPolynomialTransform(*)(PolynomialTransform const &)) &ScaledPolynomialTransform::convert,
83 "other"_a);
84 cls.def_static(
85 "convert",
86 (ScaledPolynomialTransform(*)(SipForwardTransform const &)) &ScaledPolynomialTransform::convert,
87 "other"_a);
88 cls.def_static(
89 "convert",
90 (ScaledPolynomialTransform(*)(SipReverseTransform const &)) &ScaledPolynomialTransform::convert,
91 "other"_a);
92
93 cls.def("__call__", &ScaledPolynomialTransform::operator(), "in"_a);
94
95 cls.def("getPoly", &ScaledPolynomialTransform::getPoly, py::return_value_policy::reference_internal);
96 cls.def("getInputScaling", &ScaledPolynomialTransform::getInputScaling,
97 py::return_value_policy::reference_internal);
98 cls.def("getOutputScalingInverse", &ScaledPolynomialTransform::getOutputScalingInverse,
99 py::return_value_policy::reference_internal);
100 cls.def("linearize", &ScaledPolynomialTransform::linearize);
101 });
102}
103
104} // namespace
105
107 declarePolynomialTransform(wrappers);
108 declareScaledPolynomialTransform(wrappers);
109
110 wrappers.module.def("compose",
112 "t1"_a, "t2"_a);
113 wrappers.module.def("compose",
115 "t1"_a, "t2"_a);
116}
117
118} // namespace astrom
119} // namespace meas
120} // namespace lsst
A helper class for subdividing pybind11 module across multiple translation units (i....
Definition python.h:242
PyType wrapType(PyType cls, ClassWrapperCallback function, bool setModuleName=true)
Add a type (class or enum) wrapper, deferring method and other attribute definitions until finish() i...
Definition python.h:391
pybind11::module module
The module object passed to the PYBIND11_MODULE block that contains this WrapperCollection.
Definition python.h:448
An affine coordinate transformation consisting of a linear transformation and an offset.
A 2-d coordinate transform represented by a pair of standard polynomials (one for each coordinate).
py::class_< PixelAreaBoundedField, std::shared_ptr< PixelAreaBoundedField >, BoundedField > PyClass
PolynomialTransform compose(geom::AffineTransform const &t1, PolynomialTransform const &t2)
Return a PolynomialTransform that is equivalent to the composition t1(t2())
void wrapPolynomialTransform(WrapperCollection &wrappers)