LSST Applications g0265f82a02+6fdc417ff8,g13f254ea0d+81bc2a20b4,g1e7d6db67d+6c74b93b31,g2bbee38e9b+6fdc417ff8,g3273194fdb+f6908454ef,g337abbeb29+6fdc417ff8,g3ddfee87b4+a01d390a69,g41b076d227+0ffa813159,g44018dc512+6fdc417ff8,g4500d70958+60517194e0,g47cf500ddd+0288b668b9,g4e44b06cbc+6ae8cd70f6,g5692000587+607c751afc,g6ae5381d9b+81bc2a20b4,g8588faa8eb+a01d390a69,g858d7b2824+607c751afc,g98a6847f1e+a272651890,g98ffbb4407+81bc2a20b4,g9ddcbc5298+7f7571301f,ga0be0691d8+6b353b1bd0,ga1e77700b3+951263b14e,gae46bcf261+6fdc417ff8,gb700894bec+b53b6f25d8,gbeb006f7da+e69951eae1,gc86a011abf+607c751afc,gc9537b1561+df34e46721,gcb20ee0ffd+9190efc7b8,gcf0d15dbbd+a01d390a69,gd162630629+d498c922d3,gdaeeff99f8+0d8dbea60f,gdb4ec4c597+6fdc417ff8,ge56fc974f0+69957a1b98,ge9611376a6+43606c0a9a,gf041782ebf+1e6588183a,gfb315b4925+607c751afc,w.2023.46
LSST Data Management Base Package
Loading...
Searching...
No Matches
utils.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2014-2015 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
25
26#include "lsst/sphgeom/utils.h"
27
28#include <cmath>
29
31
32
33namespace lsst {
34namespace sphgeom {
35
37 Vector3d const & a,
38 Vector3d const & b,
39 Vector3d const & n)
40{
41 Vector3d vxn = v.cross(n);
42 if (vxn.dot(a) > 0.0 && vxn.dot(b) < 0.0) {
43 // v is in the lune defined by the half great circle passing through
44 // n and a and the half great circle passing through n and b, so p
45 // is in the interior of the great circle segment from a to b. The
46 // angle θ between p and v satisfies ‖v‖ ‖n‖ sin θ = |v·n|,
47 // and ‖v‖ ‖n‖ cos θ = ‖v × n‖. The desired squared chord length is
48 // 4 sin²(θ/2).
49 double s = std::fabs(v.dot(n));
50 double c = vxn.getNorm();
51 double theta = (c == 0.0) ? 0.5 * PI : std::atan(s / c);
52 double d = std::sin(0.5 * theta);
53 return 4.0 * d * d;
54 }
55 return 4.0;
56}
57
59 Vector3d const & a,
60 Vector3d const & b,
61 Vector3d const & n)
62{
63 Vector3d vxn = v.cross(n);
64 if (vxn.dot(a) < 0.0 && vxn.dot(b) > 0.0) {
65 // v is in the lune defined by the half great circle passing through
66 // n and -a and the half great circle passing through n and -b, so p
67 // is in the interior of the great circle segment from a to b. The
68 // angle θ between p and v satisfies ‖v‖ ‖n‖ sin θ = |v·n|,
69 // and ‖v‖ ‖n‖ cos θ = -‖v × n‖. The desired squared chord length is
70 // 4 sin²(θ/2).
71 double s = std::fabs(v.dot(n));
72 double c = - vxn.getNorm();
73 double d = std::sin(0.5 * std::atan2(s, c));
74 return 4.0 * d * d;
75 }
76 return 0.0;
77}
78
80 UnitVector3d const & v1,
81 UnitVector3d const & v2)
82{
83 // For the details, see:
84 //
85 // The centroid and inertia tensor for a spherical triangle
86 // John E. Brock
87 // 1974, Naval Postgraduate School, Monterey Calif.
88 //
89 // https://openlibrary.org/books/OL25493734M/The_centroid_and_inertia_tensor_for_a_spherical_triangle
90
91 Vector3d x01 = v0.robustCross(v1); // twice the cross product of v0 and v1
92 Vector3d x12 = v1.robustCross(v2);
93 Vector3d x20 = v2.robustCross(v0);
94 double s01 = 0.5 * x01.normalize(); // sine of the angle between v0 and v1
95 double s12 = 0.5 * x12.normalize();
96 double s20 = 0.5 * x20.normalize();
97 double c01 = v0.dot(v1); // cosine of the angle between v0 and v1
98 double c12 = v1.dot(v2);
99 double c20 = v2.dot(v0);
100 double a0 = (s12 == 0.0 && c12 == 0.0) ? 0.0 : std::atan2(s12, c12);
101 double a1 = (s20 == 0.0 && c20 == 0.0) ? 0.0 : std::atan2(s20, c20);
102 double a2 = (s01 == 0.0 && c01 == 0.0) ? 0.0 : std::atan2(s01, c01);
103 return 0.5 * (x01 * a2 + x12 * a0 + x20 * a1);
104}
105
106}} // namespace lsst::sphgeom
table::Key< int > b
table::Key< int > a
This file declares a class for representing unit vectors in ℝ³.
T atan2(T... args)
T atan(T... args)
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
double dot(Vector3d const &v) const
dot returns the inner product of this unit vector and v.
Vector3d robustCross(UnitVector3d const &v) const
a.robustCross(b) is (b + a).cross(b - a) - twice the cross product of a and b.
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition Vector3d.h:44
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition Vector3d.h:73
double getNorm() const
getNorm returns the L2 norm of this vector.
Definition Vector3d.h:81
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition Vector3d.cc:41
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition Vector3d.h:101
T fabs(T... args)
double getMaxSquaredChordLength(Vector3d const &v, Vector3d const &a, Vector3d const &b, Vector3d const &n)
Let p be the unit vector furthest from v that lies on the plane with normal n in the direction of the...
Definition utils.cc:58
Vector3d getWeightedCentroid(UnitVector3d const &v0, UnitVector3d const &v1, UnitVector3d const &v2)
getWeightedCentroid returns the center of mass of the given spherical triangle (assuming a uniform ma...
Definition utils.cc:79
double getMinSquaredChordLength(Vector3d const &v, Vector3d const &a, Vector3d const &b, Vector3d const &n)
Let p be the unit vector closest to v that lies on the plane with normal n in the direction of the cr...
Definition utils.cc:36
constexpr double PI
Definition constants.h:36
T sin(T... args)
This file declares miscellaneous utility functions.