LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
_circle.cc
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * See COPYRIGHT file at the top of the source tree.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 #include "pybind11/pybind11.h"
23 #include "pybind11/numpy.h"
24 
25 #include "lsst/sphgeom/python.h"
26 
27 #include "lsst/sphgeom/Box.h"
28 #include "lsst/sphgeom/Circle.h"
30 #include "lsst/sphgeom/Ellipse.h"
31 #include "lsst/sphgeom/Region.h"
33 
36 
37 namespace py = pybind11;
38 using namespace pybind11::literals;
39 
40 namespace lsst {
41 namespace sphgeom {
42 
43 namespace {
45  uint8_t const *buffer = reinterpret_cast<uint8_t const *>(
46  PYBIND11_BYTES_AS_STRING(bytes.ptr()));
47  size_t n = static_cast<size_t>(PYBIND11_BYTES_SIZE(bytes.ptr()));
48  return Circle::decode(buffer, n);
49 }
50 }
51 
52 template <>
54  cls.attr("TYPE_CODE") = py::int_(Circle::TYPE_CODE);
55 
56  cls.def_static("empty", &Circle::empty);
57  cls.def_static("full", &Circle::full);
58  cls.def_static("squaredChordLengthFor", &Circle::squaredChordLengthFor,
59  "openingAngle"_a);
60  cls.def_static("openingAngleFor", &Circle::openingAngleFor,
61  "squaredChordLength"_a);
62 
63  cls.def(py::init<>());
64  cls.def(py::init<UnitVector3d const &>(), "center"_a);
65  cls.def(py::init<UnitVector3d const &, Angle>(), "center"_a, "angle"_a);
66  cls.def(py::init<UnitVector3d const &, double>(), "center"_a,
67  "squaredChordLength"_a);
68  cls.def(py::init<Circle const &>(), "circle"_a);
69 
70  cls.def("__eq__", &Circle::operator==, py::is_operator());
71  cls.def("__ne__", &Circle::operator!=, py::is_operator());
72  cls.def("__contains__",
73  (bool (Circle::*)(Circle const &) const) & Circle::contains,
74  py::is_operator());
75  // Rewrap this base class method since there are overloads in this subclass
76  cls.def("__contains__",
77  (bool (Circle::*)(UnitVector3d const &) const) & Circle::contains,
78  py::is_operator());
79 
80  cls.def("isEmpty", &Circle::isEmpty);
81  cls.def("isFull", &Circle::isFull);
82  cls.def("getCenter", &Circle::getCenter);
83  cls.def("getSquaredChordLength", &Circle::getSquaredChordLength);
84  cls.def("getOpeningAngle", &Circle::getOpeningAngle);
85  cls.def("contains",
86  (bool (Circle::*)(Circle const &) const) & Circle::contains);
87  // Rewrap these base class methods since there are overloads in this subclass
88  cls.def("contains",
89  (bool (Circle::*)(UnitVector3d const &) const) & Circle::contains);
90  cls.def("contains", py::vectorize((bool (Circle::*)(double, double, double) const)&Circle::contains),
91  "x"_a, "y"_a, "z"_a);
92  cls.def("contains", py::vectorize((bool (Circle::*)(double, double) const)&Circle::contains),
93  "lon"_a, "lat"_a);
94 
95  cls.def("isDisjointFrom",
96  (bool (Circle::*)(UnitVector3d const &) const) &
97  Circle::isDisjointFrom);
98  cls.def("isDisjointFrom",
99  (bool (Circle::*)(Circle const &) const) & Circle::isDisjointFrom);
100  cls.def("intersects",
101  (bool (Circle::*)(UnitVector3d const &) const) &
102  Circle::intersects);
103  cls.def("intersects",
104  (bool (Circle::*)(Circle const &) const) & Circle::intersects);
105  cls.def("isWithin",
106  (bool (Circle::*)(UnitVector3d const &) const) & Circle::isWithin);
107  cls.def("isWithin",
108  (bool (Circle::*)(Circle const &) const) & Circle::isWithin);
109  cls.def("clipTo",
110  (Circle & (Circle::*)(UnitVector3d const &)) & Circle::clipTo);
111  cls.def("clipTo", (Circle & (Circle::*)(Circle const &)) & Circle::clipTo);
112  cls.def("clippedTo",
113  (Circle(Circle::*)(UnitVector3d const &) const) &
114  Circle::clippedTo);
115  cls.def("clippedTo",
116  (Circle(Circle::*)(Circle const &) const) & Circle::clippedTo);
117  cls.def("expandTo",
118  (Circle & (Circle::*)(UnitVector3d const &)) & Circle::expandTo);
119  cls.def("expandTo",
120  (Circle & (Circle::*)(Circle const &)) & Circle::expandTo);
121  cls.def("expandedTo",
122  (Circle(Circle::*)(UnitVector3d const &) const) &
123  Circle::expandedTo);
124  cls.def("expandedTo",
125  (Circle(Circle::*)(Circle const &) const) & Circle::expandedTo);
126  cls.def("dilateBy", &Circle::dilateBy, "radius"_a);
127  cls.def("dilatedBy", &Circle::dilatedBy, "radius"_a);
128  cls.def("erodeBy", &Circle::erodeBy, "radius"_a);
129  cls.def("erodedBy", &Circle::erodedBy, "radius"_a);
130  cls.def("getArea", &Circle::getArea);
131  cls.def("complement", &Circle::complement);
132  cls.def("complemented", &Circle::complemented);
133 
134  // Note that the Region interface has already been wrapped.
135 
136  // The lambda is necessary for now; returning the unique pointer
137  // directly leads to incorrect results and crashes.
138  cls.def_static("decode",
139  [](py::bytes bytes) { return decode(bytes).release(); },
140  "bytes"_a);
141 
142  cls.def("__str__", [](Circle const &self) {
143  return py::str("Circle({!s}, {!s})")
144  .format(self.getCenter(), self.getOpeningAngle());
145  });
146  cls.def("__repr__", [](Circle const &self) {
147  return py::str("Circle({!r}, {!r})")
148  .format(self.getCenter(), self.getOpeningAngle());
149  });
150  cls.def(py::pickle(
151  [](const Circle &self) { return python::encode(self); },
152  [](py::bytes bytes) { return decode(bytes).release(); }));
153 }
154 
155 } // sphgeom
156 } // lsst
This file declares a class for representing circular regions on the unit sphere.
This file declares a class for representing convex polygons with great circle edges on the unit spher...
This file defines an interface for spherical regions.
This file declares a class for representing unit vectors in ℝ³.
table::Key< table::Array< std::uint8_t > > bytes
Definition: python.h:135
Circle is a circular region on the unit sphere that contains its boundary.
Definition: Circle.h:46
Region is a minimal interface for 2-dimensional regions on the unit sphere.
Definition: Region.h:79
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
pybind11::bytes encode(Region const &self)
Encode a Region as a pybind11 bytes object.
Definition: utils.h:53
void defineClass(py::class_< Circle, std::unique_ptr< Circle >, Region > &cls)
Definition: _circle.cc:53
A base class for image defects.
This file declares a class for representing longitude/latitude angle boxes on the unit sphere.
This file declares a class for representing elliptical regions on the unit sphere.