LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
ChebyshevBoundedField.cc
Go to the documentation of this file.
1 // -*- LSST-C++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2014 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #include <memory>
25 
26 #include "ndarray/eigen.h"
34 
35 namespace lsst {
36 namespace afw {
37 
38 template std::shared_ptr<math::ChebyshevBoundedField> table::io::PersistableFacade<
39  math::ChebyshevBoundedField>::dynamicCast(std::shared_ptr<table::io::Persistable> const&);
40 
41 namespace math {
42 
44 
45 // ------------------ Constructors and helpers ---------------------------------------------------------------
46 
47 namespace {
48 
49 // Compute an affine transform that maps an arbitrary box to [-1,1]x[-1,1]
50 lsst::geom::AffineTransform makeChebyshevRangeTransform(lsst::geom::Box2D const bbox) {
52  lsst::geom::LinearTransform::makeScaling(2.0 / bbox.getWidth(), 2.0 / bbox.getHeight()),
53  lsst::geom::Extent2D(-(2.0 * bbox.getCenterX()) / bbox.getWidth(),
54  -(2.0 * bbox.getCenterY()) / bbox.getHeight()));
55 }
56 
57 } // namespace
58 
60  ndarray::Array<double const, 2, 2> const& coefficients)
61  : BoundedField(bbox),
62  _toChebyshevRange(makeChebyshevRangeTransform(lsst::geom::Box2D(bbox))),
63  _coefficients(coefficients) {}
64 
66  : BoundedField(bbox), _toChebyshevRange(makeChebyshevRangeTransform(lsst::geom::Box2D(bbox))) {}
67 
68 ChebyshevBoundedField::ChebyshevBoundedField(ChebyshevBoundedField const&) = default;
69 ChebyshevBoundedField::ChebyshevBoundedField(ChebyshevBoundedField&&) = default;
71 
72 // ------------------ fit() and helpers ---------------------------------------------------------------------
73 
74 namespace {
75 
77 using Packer = detail::TrapezoidalPacker;
78 
79 // fill an array with 1-d Chebyshev functions of the 1st kind T(x), evaluated at the given point x
80 void evaluateBasis1d(ndarray::Array<double, 1, 1> const& t, double x) {
81  int const n = t.getSize<0>();
82  if (n > 0) {
83  t[0] = 1.0;
84  }
85  if (n > 1) {
86  t[1] = x;
87  }
88  for (int i = 2; i < n; ++i) {
89  t[i] = 2.0 * x * t[i - 1] - t[i - 2];
90  }
91 }
92 
93 // Create a matrix of 2-d Chebyshev functions evaluated at a set of positions, with
94 // Chebyshev order along columns and evaluation positions along rows. We pack the
95 // 2-d functions using the TrapezoidalPacker class, because we don't want any columns
96 // that correspond to coefficients that should be set to zero.
97 ndarray::Array<double, 2, 2> makeMatrix(ndarray::Array<double const, 1> const& x,
98  ndarray::Array<double const, 1> const& y,
99  lsst::geom::AffineTransform const& toChebyshevRange,
100  Packer const& packer, Control const& ctrl) {
101  int const nPoints = x.getSize<0>();
102  ndarray::Array<double, 1, 1> tx = ndarray::allocate(packer.nx);
103  ndarray::Array<double, 1, 1> ty = ndarray::allocate(packer.ny);
104  ndarray::Array<double, 2, 2> out = ndarray::allocate(nPoints, packer.size);
105  // Loop over x and y together, computing T_i(x) and T_j(y) arrays for each point,
106  // then packing them together.
107  for (int p = 0; p < nPoints; ++p) {
108  lsst::geom::Point2D sxy = toChebyshevRange(lsst::geom::Point2D(x[p], y[p]));
109  evaluateBasis1d(tx, sxy.getX());
110  evaluateBasis1d(ty, sxy.getY());
111  packer.pack(out[p], tx, ty); // this sets a row of out to the packed outer product of tx and ty
112  }
113  return out;
114 }
115 
116 // Create a matrix of 2-d Chebyshev functions evaluated on a grid of positions, with
117 // Chebyshev order along columns and evaluation positions along rows. We pack the
118 // 2-d functions using the TrapezoidalPacker class, because we don't want any columns
119 // that correspond to coefficients that should be set to zero.
120 ndarray::Array<double, 2, 2> makeMatrix(lsst::geom::Box2I const& bbox,
121  lsst::geom::AffineTransform const& toChebyshevRange,
122  Packer const& packer, Control const& ctrl) {
123  // Create a 2-d array that contains T_j(x) for each x value, with x values in rows and j in columns
124  ndarray::Array<double, 2, 2> tx = ndarray::allocate(bbox.getWidth(), packer.nx);
125  for (int x = bbox.getBeginX(), p = 0; p < bbox.getWidth(); ++p, ++x) {
126  evaluateBasis1d(tx[p], toChebyshevRange[lsst::geom::AffineTransform::XX] * x +
127  toChebyshevRange[lsst::geom::AffineTransform::X]);
128  }
129 
130  // Loop over y values, and at each point, compute T_i(y), then loop over x and multiply by the T_j(x)
131  // we already computed and stored above.
132  ndarray::Array<double, 2, 2> out = ndarray::allocate(bbox.getArea(), packer.size);
133  ndarray::Array<double, 2, 2>::Iterator outIter = out.begin();
134  ndarray::Array<double, 1, 1> ty = ndarray::allocate(ctrl.orderY + 1);
135  for (int y = bbox.getBeginY(), i = 0; i < bbox.getHeight(); ++i, ++y) {
136  evaluateBasis1d(ty, toChebyshevRange[lsst::geom::AffineTransform::YY] * y +
137  toChebyshevRange[lsst::geom::AffineTransform::Y]);
138  for (int j = 0; j < bbox.getWidth(); ++j, ++outIter) {
139  // this sets a row of out to the packed outer product of tx and ty
140  packer.pack(*outIter, tx[j], ty);
141  }
142  }
143  return out;
144 }
145 
146 } // namespace
147 
149  ndarray::Array<double const, 1> const& x,
150  ndarray::Array<double const, 1> const& y,
151  ndarray::Array<double const, 1> const& z,
152  Control const& ctrl) {
153  // Initialize the result object, so we can make use of the AffineTransform it builds
155  // This packer object knows how to map the 2-d Chebyshev functions onto a 1-d array,
156  // using only those that the control says should have nonzero coefficients.
157  Packer const packer(ctrl);
158  // Create a "design matrix" for the linear least squares problem (A in min||Ax-b||)
159  ndarray::Array<double, 2, 2> matrix = makeMatrix(x, y, result->_toChebyshevRange, packer, ctrl);
160  // Solve the linear least squares problem.
162  // Unpack the solution into a 2-d matrix, with zeros for values we didn't fit.
163  result->_coefficients = packer.unpack(lstsq.getSolution());
164  return result;
165 }
166 
168  ndarray::Array<double const, 1> const& x,
169  ndarray::Array<double const, 1> const& y,
170  ndarray::Array<double const, 1> const& z,
171  ndarray::Array<double const, 1> const& w,
172  Control const& ctrl) {
173  // Initialize the result object, so we can make use of the AffineTransform it builds
175  // This packer object knows how to map the 2-d Chebyshev functions onto a 1-d array,
176  // using only those that the control says should have nonzero coefficients.
177  Packer const packer(ctrl);
178  // Create a "design matrix" for the linear least squares problem ('A' in min||Ax-b||)
179  ndarray::Array<double, 2, 2> matrix = makeMatrix(x, y, result->_toChebyshevRange, packer, ctrl);
180  // We want to do weighted least squares, so we multiply both the data vector 'b' and the
181  // matrix 'A' by the weights.
182  ndarray::asEigenArray(matrix).colwise() *= ndarray::asEigenArray(w);
183  ndarray::Array<double, 1, 1> wz = ndarray::copy(z);
184  ndarray::asEigenArray(wz) *= ndarray::asEigenArray(w);
185  // Solve the linear least squares problem.
187  // Unpack the solution into a 2-d matrix, with zeros for values we didn't fit.
188  result->_coefficients = packer.unpack(lstsq.getSolution());
189  return result;
190 }
191 
192 template <typename T>
194  Control const& ctrl) {
195  // Initialize the result object, so we can make use of the AffineTransform it builds
198  // This packer object knows how to map the 2-d Chebyshev functions onto a 1-d array,
199  // using only those that the control says should have nonzero coefficients.
200  Packer const packer(ctrl);
201  ndarray::Array<double, 2, 2> matrix = makeMatrix(bbox, result->_toChebyshevRange, packer, ctrl);
202  // Flatten the data image into a 1-d vector.
203  ndarray::Array<double, 2, 2> imgCopy = ndarray::allocate(img.getArray().getShape());
204  imgCopy.deep() = img.getArray();
205  ndarray::Array<double const, 1, 1> z = ndarray::flatten<1>(imgCopy);
206  // Solve the linear least squares problem.
208  // Unpack the solution into a 2-d matrix, with zeros for values we didn't fit.
209  result->_coefficients = packer.unpack(lstsq.getSolution());
210  return result;
211 }
212 
213 // ------------------ modifier factories ---------------------------------------------------------------
214 
216  if (static_cast<std::size_t>(ctrl.orderX) >= _coefficients.getSize<1>()) {
218  (boost::format("New x order (%d) exceeds old x order (%d)") % ctrl.orderX %
219  (_coefficients.getSize<1>() - 1))
220  .str());
221  }
222  if (static_cast<std::size_t>(ctrl.orderY) >= _coefficients.getSize<0>()) {
224  (boost::format("New y order (%d) exceeds old y order (%d)") % ctrl.orderY %
225  (_coefficients.getSize<0>() - 1))
226  .str());
227  }
228  ndarray::Array<double, 2, 2> coefficients = ndarray::allocate(ctrl.orderY + 1, ctrl.orderX + 1);
229  coefficients.deep() = _coefficients[ndarray::view(0, ctrl.orderY + 1)(0, ctrl.orderX + 1)];
230  if (ctrl.triangular) {
231  Packer packer(ctrl);
232  ndarray::Array<double, 1, 1> packed = ndarray::allocate(packer.size);
233  packer.pack(packed, coefficients);
234  packer.unpack(coefficients, packed);
235  }
236  return std::make_shared<ChebyshevBoundedField>(getBBox(), coefficients);
237 }
238 
240  return std::make_shared<ChebyshevBoundedField>(bbox, _coefficients);
241 }
242 
243 // ------------------ evaluate() and helpers ---------------------------------------------------------------
244 
245 namespace {
246 
247 // To evaluate a 1-d Chebyshev function without needing to have workspace, we use the
248 // Clenshaw algorith, which is like going through the recurrence relation in reverse.
249 // The CoeffGetter argument g is something that behaves like an array, providing access
250 // to the coefficients.
251 template <typename CoeffGetter>
252 double evaluateFunction1d(CoeffGetter g, double x, int size) {
253  double b_kp2 = 0.0, b_kp1 = 0.0;
254  for (int k = (size - 1); k > 0; --k) {
255  double b_k = g[k] + 2 * x * b_kp1 - b_kp2;
256  b_kp2 = b_kp1;
257  b_kp1 = b_k;
258  }
259  return g[0] + x * b_kp1 - b_kp2;
260 }
261 
262 // This class imitates a 1-d array, by running evaluateFunction1d on a nested dimension;
263 // this lets us reuse the logic in evaluateFunction1d for both dimensions. Essentially,
264 // we run evaluateFunction1d on a column of coefficients to evaluate T_i(x), then pass
265 // the result of that to evaluateFunction1d with the results as the "coefficients" associated
266 // with the T_j(y) functions.
267 struct RecursionArrayImitator {
268  double operator[](int i) const {
269  return evaluateFunction1d(coefficients[i], x, coefficients.getSize<1>());
270  }
271 
272  RecursionArrayImitator(ndarray::Array<double const, 2, 2> const& coefficients_, double x_)
273  : coefficients(coefficients_), x(x_) {}
274 
275  ndarray::Array<double const, 2, 2> coefficients;
276  double x;
277 };
278 
279 } // namespace
280 
282  lsst::geom::Point2D p = _toChebyshevRange(position);
283  return evaluateFunction1d(RecursionArrayImitator(_coefficients, p.getX()), p.getY(),
284  _coefficients.getSize<0>());
285 }
286 
287 // The integral of T_n(x) over [-1,1]:
288 // https://en.wikipedia.org/wiki/Chebyshev_polynomials#Differentiation_and_integration
289 double integrateTn(int n) {
290  if (n % 2 == 1)
291  return 0;
292  else
293  return 2.0 / (1.0 - double(n * n));
294 }
295 
297  double result = 0;
298  double determinant = getBBox().getArea() / 4.0;
299  for (ndarray::Size j = 0; j < _coefficients.getSize<0>(); j++) {
300  for (ndarray::Size i = 0; i < _coefficients.getSize<1>(); i++) {
301  result += _coefficients[j][i] * integrateTn(i) * integrateTn(j);
302  }
303  }
304  return result * determinant;
305 }
306 
307 double ChebyshevBoundedField::mean() const { return integrate() / getBBox().getArea(); }
308 
309 // ------------------ persistence ---------------------------------------------------------------------------
310 
311 namespace {
312 
313 struct PersistenceHelper {
314  table::Schema schema;
315  table::Key<int> orderX;
317  table::Key<table::Array<double> > coefficients;
318 
319  PersistenceHelper(int nx, int ny)
320  : schema(),
321  orderX(schema.addField<int>("order_x", "maximum Chebyshev function order in x")),
322  bbox(table::Box2IKey::addFields(schema, "bbox", "bounding box", "pixel")),
323  coefficients(schema.addField<table::Array<double> >(
324  "coefficients", "Chebyshev function coefficients, ordered by y then x", nx * ny)) {}
325 
326  PersistenceHelper(table::Schema const& s)
327  : schema(s), orderX(s["order_x"]), bbox(s["bbox"]), coefficients(s["coefficients"]) {}
328 };
329 
330 class ChebyshevBoundedFieldFactory : public table::io::PersistableFactory {
331 public:
332  explicit ChebyshevBoundedFieldFactory(std::string const& name)
333  : afw::table::io::PersistableFactory(name) {}
334 
335  std::shared_ptr<table::io::Persistable> read(InputArchive const& archive,
336  CatalogVector const& catalogs) const override {
337  LSST_ARCHIVE_ASSERT(catalogs.size() == 1u);
338  LSST_ARCHIVE_ASSERT(catalogs.front().size() == 1u);
339  table::BaseRecord const& record = catalogs.front().front();
340  PersistenceHelper const keys(record.getSchema());
341  lsst::geom::Box2I bbox(record.get(keys.bbox));
342  std::size_t nx = record.get(keys.orderX) + 1;
343  std::size_t ny = keys.coefficients.getSize() / nx;
344  LSST_ARCHIVE_ASSERT(nx * ny == keys.coefficients.getSize());
345  ndarray::Array<double, 2, 2> coefficients = ndarray::allocate(ny, nx);
346  ndarray::flatten<1>(coefficients) = record.get(keys.coefficients);
347  return std::make_shared<ChebyshevBoundedField>(bbox, coefficients);
348  }
349 };
350 
351 std::string getChebyshevBoundedFieldPersistenceName() { return "ChebyshevBoundedField"; }
352 
353 ChebyshevBoundedFieldFactory registration(getChebyshevBoundedFieldPersistenceName());
354 
355 } // namespace
356 
358  return getChebyshevBoundedFieldPersistenceName();
359 }
360 
361 std::string ChebyshevBoundedField::getPythonModule() const { return "lsst.afw.math"; }
362 
364  PersistenceHelper const keys(_coefficients.getSize<1>(), _coefficients.getSize<0>());
365  table::BaseCatalog catalog = handle.makeCatalog(keys.schema);
366  std::shared_ptr<table::BaseRecord> record = catalog.addNew();
367  record->set(keys.orderX, _coefficients.getSize<1>() - 1);
368  record->set(keys.bbox, getBBox());
369  (*record)[keys.coefficients].deep() = ndarray::flatten<1>(_coefficients);
370  handle.saveCatalog(catalog);
371 }
372 
373 // ------------------ operators -----------------------------------------------------------------------------
374 
376  return std::make_shared<ChebyshevBoundedField>(getBBox(), ndarray::copy(getCoefficients() * scale));
377 }
378 
380  auto rhsCasted = dynamic_cast<ChebyshevBoundedField const*>(&rhs);
381  if (!rhsCasted) return false;
382 
383  return (getBBox() == rhsCasted->getBBox()) &&
384  (_coefficients.getShape() == rhsCasted->_coefficients.getShape()) &&
385  all(equal(_coefficients, rhsCasted->_coefficients));
386 }
387 
388 std::string ChebyshevBoundedField::toString() const {
390  os << "ChebyshevBoundedField (" << _coefficients.getShape() << " coefficients in y,x)";
391  return os.str();
392 }
393 
394 // ------------------ explicit instantiation ----------------------------------------------------------------
395 
396 #ifndef DOXYGEN
397 
398 #define INSTANTIATE(T) \
399  template std::shared_ptr<ChebyshevBoundedField> ChebyshevBoundedField::fit(image::Image<T> const& image, \
400  Control const& ctrl)
401 
402 INSTANTIATE(float);
403 INSTANTIATE(double);
404 
405 #endif
406 } // namespace math
407 } // namespace afw
408 } // namespace lsst
py::object result
Definition: _schema.cc:429
table::Key< std::string > name
Definition: Amplifier.cc:116
table::Key< int > orderX
table::Box2IKey bbox
table::Schema schema
ndarray::Array< double const, 2, 2 > coefficients
double x
#define INSTANTIATE(FROMSYS, TOSYS)
Definition: Detector.cc:484
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
double z
Definition: Match.cc:44
std::ostream * os
Definition: Schema.cc:557
int y
Definition: SpanSet.cc:48
#define LSST_ARCHIVE_ASSERT(EXPR)
An assertion macro used to validate the structure of an InputArchive.
Definition: Persistable.h:48
lsst::geom::Box2I getBBox(ImageOrigin origin=PARENT) const
Definition: ImageBase.h:445
A class to represent a 2-dimensional array of pixels.
Definition: Image.h:51
An abstract base class for 2-d functions defined on an integer bounding boxes.
Definition: BoundedField.h:55
lsst::geom::Box2I getBBox() const
Return the bounding box that defines the region where the field is valid.
Definition: BoundedField.h:112
A control object used when fitting ChebyshevBoundedField to data (see ChebyshevBoundedField::fit)
int computeSize() const
Return the number of nonzero coefficients in the Chebyshev function defined by this object.
bool triangular
"if true, only include terms where the sum of the x and y order " "is less than or equal to max(order...
int orderY
"maximum Chebyshev function order in y" ;
int orderX
"maximum Chebyshev function order in x" ;
A BoundedField based on 2-d Chebyshev polynomials of the first kind.
static std::shared_ptr< ChebyshevBoundedField > fit(lsst::geom::Box2I const &bbox, ndarray::Array< double const, 1 > const &x, ndarray::Array< double const, 1 > const &y, ndarray::Array< double const, 1 > const &z, Control const &ctrl)
Fit a Chebyshev approximation to non-gridded data with equal weights.
std::shared_ptr< ChebyshevBoundedField > relocate(lsst::geom::Box2I const &bbox) const
Return a new ChebyshevBoundedField with domain set to the given bounding box.
bool operator==(BoundedField const &rhs) const override
BoundedFields (of the same sublcass) are equal if their bounding boxes and parameters are equal.
std::shared_ptr< BoundedField > operator*(double const scale) const override
Return a scaled BoundedField.
void write(OutputArchiveHandle &handle) const override
Write the object to one or more catalogs.
std::string getPythonModule() const override
Return the fully-qualified Python module that should be imported to guarantee that its factory is reg...
double mean() const override
Compute the mean of this function over its bounding-box.
ndarray::Array< double const, 2, 2 > getCoefficients() const
Return the coefficient matrix.
std::shared_ptr< ChebyshevBoundedField > truncate(Control const &ctrl) const
Return a new ChebyshevBoudedField with maximum orders set by the given control object.
std::string getPersistenceName() const override
Return the unique name used to persist this object and look up its factory.
ChebyshevBoundedField(lsst::geom::Box2I const &bbox, ndarray::Array< double const, 2, 2 > const &coefficients)
Initialize the field from its bounding box an coefficients.
double integrate() const override
Compute the integral of this function over its bounding-box.
virtual double evaluate(lsst::geom::Point2D const &position) const=0
Evaluate the field at the given point.
Solver for linear least-squares problems.
Definition: LeastSquares.h:67
ndarray::Array< double const, 1, 1 > getSolution()
Return the vector solution to the least squares problem.
static LeastSquares fromDesignMatrix(ndarray::Array< T1, 2, C1 > const &design, ndarray::Array< T2, 1, C2 > const &data, Factorization factorization=NORMAL_EIGENSYSTEM)
Initialize from the design matrix and data vector given as ndarrays.
Definition: LeastSquares.h:100
@ NORMAL_EIGENSYSTEM
Use the normal equations with a symmetric Eigensystem decomposition.
Definition: LeastSquares.h:72
std::shared_ptr< RecordT > addNew()
Create a new record, add it to the end of the catalog, and return a pointer to it.
Definition: Catalog.h:490
An object passed to Persistable::write to allow it to persist itself.
void saveCatalog(BaseCatalog const &catalog)
Save a catalog in the archive.
BaseCatalog makeCatalog(Schema const &schema)
Return a new, empty catalog with the given schema.
An affine coordinate transformation consisting of a linear transformation and an offset.
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
An integer coordinate rectangle.
Definition: Box.h:55
int getArea() const
Definition: Box.h:189
static LinearTransform makeScaling(double s) noexcept
Reports attempts to exceed implementation-defined length limits for some classes.
Definition: Runtime.h:76
def scale(algorithm, min, max=None, frame=None)
Definition: ds9.py:108
BoxKey< lsst::geom::Box2I > Box2IKey
Definition: aggregates.h:201
bool all(CoordinateExpr< N > const &expr) noexcept
Return true if all elements are true.
FastFinder::Iterator Iterator
Definition: FastFinder.cc:178
def format(config, name=None, writeSourceLine=True, prefix="", verbose=False)
Definition: history.py:174
A base class for image defects.
double w
Definition: CoaddPsf.cc:69
A helper class ChebyshevBoundedField, for mapping trapezoidal matrices to 1-d arrays.
std::shared_ptr< table::io::Persistable > read(table::io::InputArchive const &archive, table::io::CatalogVector const &catalogs) const override
Definition: warpExposure.cc:0