LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
KernelSolution.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
12 #ifndef LSST_IP_DIFFIM_KERNELSOLUTION_H
13 #define LSST_IP_DIFFIM_KERNELSOLUTION_H
14 
15 #include <memory>
16 #include "Eigen/Core"
17 
18 #include "lsst/afw/math.h"
19 #include "lsst/afw/image.h"
20 #include "lsst/geom.h"
21 #include "lsst/daf/base.h"
22 
23 namespace lsst {
24 namespace ip {
25 namespace diffim {
26 
27  /*
28  * @brief Method used to solve for M and B
29  */
30 
32  public:
36 
38  NONE = 0,
41  LU = 3,
42  EIGENVECTOR = 4
43  };
44 
47  SVD = 1
48  };
49 
50  explicit KernelSolution(Eigen::MatrixXd mMat,
51  Eigen::VectorXd bVec,
52  bool fitForBackground);
53  explicit KernelSolution(bool fitForBackground);
54  explicit KernelSolution();
55 
56  virtual ~KernelSolution() {};
57  virtual void solve();
58  virtual void solve(Eigen::MatrixXd const& mMat,
59  Eigen::VectorXd const& bVec);
61  virtual double getConditionNumber(ConditionNumberType conditionType);
62  virtual double getConditionNumber(Eigen::MatrixXd const& mMat, ConditionNumberType conditionType);
63 
64  inline Eigen::MatrixXd const& getM() {return _mMat;}
65  inline Eigen::VectorXd const& getB() {return _bVec;}
66  void printM() {std::cout << _mMat << std::endl;}
67  void printB() {std::cout << _bVec << std::endl;}
68  void printA() {std::cout << _aVec << std::endl;}
69  inline int getId() const { return _id; }
70 
71  protected:
72  int _id;
73  Eigen::MatrixXd _mMat;
74  Eigen::VectorXd _bVec;
75  Eigen::VectorXd _aVec;
78  static int _SolutionId;
79 
80  };
81 
82  template <typename InputT>
84  public:
86 
88  bool fitForBackground);
89  virtual ~StaticKernelSolution() {};
90 
91  /* Overrides KernelSolution */
92  void solve();
93 
94  /* Used by RegularizedKernelSolution */
95  virtual void build(lsst::afw::image::Image<InputT> const &templateImage,
96  lsst::afw::image::Image<InputT> const &scienceImage,
100  virtual double getBackground();
101  virtual double getKsum();
103 
104  protected:
105  Eigen::MatrixXd _cMat;
106  Eigen::VectorXd _iVec;
107  Eigen::VectorXd _ivVec;
108 
110  double _background;
111  double _kSum;
112 
113  void _setKernel();
114  void _setKernelUncertainty();
115  };
116 
117 
118  template <typename InputT>
120  public:
122 
124  bool fitForBackground);
125  virtual ~MaskedKernelSolution() {};
126  virtual void buildOrig(lsst::afw::image::Image<InputT> const &templateImage,
127  lsst::afw::image::Image<InputT> const &scienceImage,
129  const &varianceEstimate,
131 
132  virtual void buildWithMask(lsst::afw::image::Image<InputT> const &templateImage,
133  lsst::afw::image::Image<InputT> const &scienceImage,
135  const &varianceEstimate,
137 
138  virtual void buildSingleMaskOrig(lsst::afw::image::Image<InputT> const &templateImage,
139  lsst::afw::image::Image<InputT> const &scienceImage,
141  const &varianceEstimate,
142  lsst::geom::Box2I maskBox);
143  };
144 
145 
146 
147  template <typename InputT>
149  public:
151 
153  bool fitForBackground,
154  Eigen::MatrixXd const& hMat,
156  );
158  void solve();
159  double getLambda() {return _lambda;}
160  double estimateRisk(double maxCond);
161 
162  /* Include additive term (_lambda * _hMat) in M matrix? */
163  Eigen::MatrixXd getM(bool includeHmat = true);
164 
165  private:
166  Eigen::MatrixXd const _hMat;
167  double _lambda;
169 
170  std::vector<double> _createLambdaSteps();
171  };
172 
173 
175  public:
177 
178  /* Creates a polynomial SpatialFunction */
180  lsst::afw::math::Kernel::SpatialFunctionPtr spatialKernelFunction,
183  );
184 
186 
187  void addConstraint(float xCenter, float yCenter,
188  Eigen::MatrixXd const& qMat,
189  Eigen::VectorXd const& wVec);
190 
191  void solve();
195 
196  private:
197  lsst::afw::math::Kernel::SpatialFunctionPtr _spatialKernelFunction;
198  bool _constantFirstTerm;
199 
202  double _kSum;
203 
205  int _nbases;
206  int _nkt;
207  int _nbt;
208  int _nt;
209 
210  void _setKernel();
211  void _setKernelUncertainty();
212  };
213 
214 }}} // end of namespace lsst::ip::diffim
215 
216 #endif
Represent a 2-dimensional array of bitmask pixels.
Definition: Mask.h:77
Class for storing generic metadata.
Definition: PropertySet.h:66
An integer coordinate rectangle.
Definition: Box.h:55
bool _fitForBackground
Background terms included in fit.
virtual double getConditionNumber(ConditionNumberType conditionType)
int _id
Unique ID for object.
Eigen::VectorXd _bVec
Derived least squares B vector.
std::shared_ptr< KernelSolution > Ptr
Eigen::VectorXd _aVec
Derived least squares solution matrix.
KernelSolvedBy _solvedBy
Type of algorithm used to make solution.
lsst::afw::math::Kernel::Pixel PixelT
Eigen::VectorXd const & getB()
Eigen::MatrixXd _mMat
Derived least squares M matrix.
static int _SolutionId
Unique identifier for solution.
Eigen::MatrixXd const & getM()
lsst::afw::image::Image< lsst::afw::math::Kernel::Pixel > ImageT
virtual void buildWithMask(lsst::afw::image::Image< InputT > const &templateImage, lsst::afw::image::Image< InputT > const &scienceImage, lsst::afw::image::Image< lsst::afw::image::VariancePixel > const &varianceEstimate, lsst::afw::image::Mask< lsst::afw::image::MaskPixel > const &pixelMask)
virtual void buildSingleMaskOrig(lsst::afw::image::Image< InputT > const &templateImage, lsst::afw::image::Image< InputT > const &scienceImage, lsst::afw::image::Image< lsst::afw::image::VariancePixel > const &varianceEstimate, lsst::geom::Box2I maskBox)
MaskedKernelSolution(lsst::afw::math::KernelList const &basisList, bool fitForBackground)
std::shared_ptr< MaskedKernelSolution< InputT > > Ptr
virtual void buildOrig(lsst::afw::image::Image< InputT > const &templateImage, lsst::afw::image::Image< InputT > const &scienceImage, lsst::afw::image::Image< lsst::afw::image::VariancePixel > const &varianceEstimate, lsst::afw::image::Mask< lsst::afw::image::MaskPixel > pixelMask)
std::shared_ptr< RegularizedKernelSolution< InputT > > Ptr
RegularizedKernelSolution(lsst::afw::math::KernelList const &basisList, bool fitForBackground, Eigen::MatrixXd const &hMat, lsst::daf::base::PropertySet const &ps)
std::pair< std::shared_ptr< lsst::afw::math::LinearCombinationKernel >, lsst::afw::math::Kernel::SpatialFunctionPtr > getSolutionPair()
std::shared_ptr< lsst::afw::image::Image< lsst::afw::math::Kernel::Pixel > > makeKernelImage(lsst::geom::Point2D const &pos)
SpatialKernelSolution(lsst::afw::math::KernelList const &basisList, lsst::afw::math::Kernel::SpatialFunctionPtr spatialKernelFunction, lsst::afw::math::Kernel::SpatialFunctionPtr background, lsst::daf::base::PropertySet const &ps)
void addConstraint(float xCenter, float yCenter, Eigen::MatrixXd const &qMat, Eigen::VectorXd const &wVec)
std::shared_ptr< SpatialKernelSolution > Ptr
double _background
Derived differential background estimate.
virtual std::pair< std::shared_ptr< lsst::afw::math::Kernel >, double > getSolutionPair()
void _setKernel()
Set kernel after solution.
virtual std::shared_ptr< lsst::afw::math::Kernel > getKernel()
Eigen::VectorXd _iVec
Vectorized I.
std::shared_ptr< lsst::afw::math::Kernel > _kernel
Derived single-object convolution kernel.
void _setKernelUncertainty()
Not implemented.
virtual std::shared_ptr< lsst::afw::image::Image< lsst::afw::math::Kernel::Pixel > > makeKernelImage()
Eigen::VectorXd _ivVec
Inverse variance.
std::shared_ptr< StaticKernelSolution< InputT > > Ptr
StaticKernelSolution(lsst::afw::math::KernelList const &basisList, bool fitForBackground)
virtual void build(lsst::afw::image::Image< InputT > const &templateImage, lsst::afw::image::Image< InputT > const &scienceImage, lsst::afw::image::Image< lsst::afw::image::VariancePixel > const &varianceEstimate)
T endl(T... args)
A base class for image defects.