LSSTApplications  19.0.0-10-g920eed2,19.0.0-11-g48a0200+2,19.0.0-18-gfc4e62b+11,19.0.0-2-g3b2f90d+2,19.0.0-2-gd671419+5,19.0.0-20-g5a5a17ab+9,19.0.0-21-g2644856+11,19.0.0-22-gc5dc5b1+6,19.0.0-23-gdc29a50+3,19.0.0-24-g923e380+11,19.0.0-25-g6c8df7140,19.0.0-28-g9b887e2,19.0.0-3-g2b32d65+5,19.0.0-3-g8227491+10,19.0.0-3-g9c54d0d+10,19.0.0-3-gca68e65+6,19.0.0-3-gcfc5f51+5,19.0.0-3-ge110943+9,19.0.0-3-ge74d124,19.0.0-3-gfe04aa6+11,19.0.0-4-g06f5963+5,19.0.0-4-g3d16501+11,19.0.0-4-g4a9c019+5,19.0.0-4-g5a8b323,19.0.0-4-g66397f0+1,19.0.0-4-g8278b9b+1,19.0.0-4-g8557e14,19.0.0-4-g8964aba+11,19.0.0-4-ge404a01+10,19.0.0-5-g40f3a5a,19.0.0-5-g4db63b3,19.0.0-5-gfb03ce7+11,19.0.0-6-gbaebbfb+10,19.0.0-60-gafafd468+11,19.0.0-67-g3ab1e6e,19.0.0-7-g039c0b5+9,19.0.0-7-gbea9075+4,19.0.0-7-gc567de5+11,19.0.0-8-g3a3ce09+6,19.0.0-9-g463f923+10,w.2020.21
LSSTDataManagementBasePackage
Vector3d.h
Go to the documentation of this file.
1 /*
2  * LSST Data Management System
3  * Copyright 2014-2015 AURA/LSST.
4  *
5  * This product includes software developed by the
6  * LSST Project (http://www.lsst.org/).
7  *
8  * This program is free software: you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 3 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the LSST License Statement and
19  * the GNU General Public License along with this program. If not,
20  * see <https://www.lsstcorp.org/LegalNotices/>.
21  */
22 
23 #ifndef LSST_SPHGEOM_VECTOR3D_H_
24 #define LSST_SPHGEOM_VECTOR3D_H_
25 
28 
29 #include <cmath>
30 #include <iosfwd>
31 #include <limits>
32 #include <stdexcept>
33 
34 
35 namespace lsst {
36 namespace sphgeom {
37 
38 // Forward declarations
39 class Angle;
40 class UnitVector3d;
41 
42 
44 class Vector3d {
45 public:
47  Vector3d() { _v[0] = 0.0; _v[1] = 0.0; _v[2] = 0.0; }
48 
50  Vector3d(double x, double y, double z) { _v[0] = x; _v[1] = y; _v[2] = z; }
51 
52  bool operator==(Vector3d const & v) const {
53  return _v[0] == v._v[0] && _v[1] == v._v[1] && _v[2] == v._v[2];
54  }
55 
56  bool operator!=(Vector3d const & v) const {
57  return _v[0] != v._v[0] || _v[1] != v._v[1] || _v[2] != v._v[2];
58  }
59 
61  double const * getData() const { return _v; }
62 
64  double operator()(int i) const { return _v[i]; }
65 
66  double x() const { return _v[0]; }
67 
68  double y() const { return _v[1]; }
69 
70  double z() const { return _v[2]; }
71 
73  double dot(Vector3d const & v) const {
74  return _v[0] * v._v[0] + _v[1] * v._v[1] + _v[2] * v._v[2];
75  }
76 
78  double getSquaredNorm() const { return dot(*this); }
79 
81  double getNorm() const {
82  return std::sqrt(getSquaredNorm());
83  }
84 
86  bool isZero() const { return *this == Vector3d(); }
87 
93  double normalize();
94 
96  bool isNormalized() const {
97  return std::fabs(1.0 - getSquaredNorm()) <= 1e-15;
98  }
99 
101  Vector3d cross(Vector3d const & v) const {
102  return Vector3d(_v[1] * v._v[2] - _v[2] * v._v[1],
103  _v[2] * v._v[0] - _v[0] * v._v[2],
104  _v[0] * v._v[1] - _v[1] * v._v[0]);
105  }
106 
108  Vector3d operator-() const {
109  return Vector3d(-_v[0],
110  -_v[1],
111  -_v[2]);
112  }
113 
116  Vector3d operator*(double s) const {
117  return Vector3d(_v[0] * s,
118  _v[1] * s,
119  _v[2] * s);
120  }
121 
124  Vector3d operator/(double s) const {
125  return Vector3d(_v[0] / s,
126  _v[1] / s,
127  _v[2] / s);
128  }
129 
131  Vector3d operator+(Vector3d const & v) const {
132  return Vector3d(_v[0] + v._v[0],
133  _v[1] + v._v[1],
134  _v[2] + v._v[2]);
135  }
136 
138  Vector3d operator-(Vector3d const & v) const {
139  return Vector3d(_v[0] - v._v[0],
140  _v[1] - v._v[1],
141  _v[2] - v._v[2]);
142  }
143 
144  Vector3d & operator*=(double s) { *this = *this * s; return *this; }
145  Vector3d & operator/=(double s) { *this = *this / s; return *this; }
146  Vector3d & operator+=(Vector3d const & v) { *this = *this + v; return *this; }
147  Vector3d & operator-=(Vector3d const & v) { *this = *this - v; return *this; }
148 
150  Vector3d cwiseProduct(Vector3d const & v) const {
151  return Vector3d(_v[0] * v._v[0],
152  _v[1] * v._v[1],
153  _v[2] * v._v[2]);
154  }
155 
158  Vector3d rotatedAround(UnitVector3d const & k, Angle a) const;
159 
160 private:
161  double _v[3];
162 };
163 
164 
165 inline Vector3d operator*(double s, Vector3d const & v) { return v * s; }
166 
167 std::ostream & operator<<(std::ostream &, Vector3d const &);
168 
169 }} // namespace lsst::sphgeom
170 
171 #endif // LSST_SPHGEOM_VECTOR3D_H_
lsst::sphgeom::Vector3d::operator*
Vector3d operator*(double s) const
The multiplication operator returns the component-wise product of this vector with scalar s.
Definition: Vector3d.h:116
std::fabs
T fabs(T... args)
lsst::sphgeom::Vector3d::getData
double const * getData() const
data returns a pointer to the 3 components of this vector.
Definition: Vector3d.h:61
lsst::sphgeom::Vector3d::operator-
Vector3d operator-(Vector3d const &v) const
The subtraction operator returns the difference between this vector and v.
Definition: Vector3d.h:138
lsst::sphgeom::Vector3d::operator*=
Vector3d & operator*=(double s)
Definition: Vector3d.h:144
lsst::sphgeom::Vector3d::operator+
Vector3d operator+(Vector3d const &v) const
The addition operator returns the sum of this vector and v.
Definition: Vector3d.h:131
std::sqrt
T sqrt(T... args)
lsst::sphgeom::Vector3d
Vector3d is a vector in ℝ³ with components stored in double precision.
Definition: Vector3d.h:44
lsst::sphgeom::Vector3d::isNormalized
bool isNormalized() const
isNormalized returns true if this vectors norm is very close to 1.
Definition: Vector3d.h:96
lsst::sphgeom::Vector3d::operator-=
Vector3d & operator-=(Vector3d const &v)
Definition: Vector3d.h:147
lsst::afw::table::Angle
lsst::geom::Angle Angle
Definition: misc.h:33
lsst::sphgeom::UnitVector3d
UnitVector3d is a unit vector in ℝ³ with components stored in double precision.
Definition: UnitVector3d.h:55
lsst::sphgeom::Vector3d::z
double z() const
Definition: Vector3d.h:70
std::ostream
STL class.
lsst::sphgeom::Vector3d::dot
double dot(Vector3d const &v) const
dot returns the inner product of this vector and v.
Definition: Vector3d.h:73
lsst::sphgeom::Vector3d::operator()
double operator()(int i) const
The function call operator returns the i-th component of this vector.
Definition: Vector3d.h:64
lsst::sphgeom::Vector3d::getNorm
double getNorm() const
getNorm returns the L2 norm of this vector.
Definition: Vector3d.h:81
lsst::sphgeom::Vector3d::normalize
double normalize()
normalize scales this vector to have unit norm and returns its norm prior to scaling.
Definition: Vector3d.cc:41
lsst::sphgeom::Vector3d::Vector3d
Vector3d(double x, double y, double z)
This constructor creates a vector with the given components.
Definition: Vector3d.h:50
lsst::sphgeom::Vector3d::cross
Vector3d cross(Vector3d const &v) const
cross returns the cross product of this vector and v.
Definition: Vector3d.h:101
lsst::sphgeom::Vector3d::operator+=
Vector3d & operator+=(Vector3d const &v)
Definition: Vector3d.h:146
lsst
A base class for image defects.
Definition: imageAlgorithm.dox:1
lsst::sphgeom::Vector3d::Vector3d
Vector3d()
The default constructor creates a zero vector.
Definition: Vector3d.h:47
lsst::sphgeom::Vector3d::operator/
Vector3d operator/(double s) const
The division operator returns the component-wise quotient of this vector with scalar s.
Definition: Vector3d.h:124
lsst::sphgeom::Vector3d::operator!=
bool operator!=(Vector3d const &v) const
Definition: Vector3d.h:56
lsst::sphgeom::Vector3d::rotatedAround
Vector3d rotatedAround(UnitVector3d const &k, Angle a) const
rotatedAround returns a copy of this vector, rotated around the unit vector k by angle a according to...
Definition: Vector3d.cc:125
lsst::sphgeom::Vector3d::getSquaredNorm
double getSquaredNorm() const
getSquaredNorm returns the inner product of this vector with itself.
Definition: Vector3d.h:78
lsst::sphgeom::operator*
Angle operator*(double a, Angle const &b)
Definition: Angle.h:98
lsst::sphgeom::Vector3d::y
double y() const
Definition: Vector3d.h:68
a
table::Key< int > a
Definition: TransmissionCurve.cc:466
lsst::sphgeom::Vector3d::isZero
bool isZero() const
isZero returns true if all the components of this vector are zero.
Definition: Vector3d.h:86
lsst::sphgeom::Vector3d::cwiseProduct
Vector3d cwiseProduct(Vector3d const &v) const
cwiseProduct returns the component-wise product of this vector and v.
Definition: Vector3d.h:150
lsst::sphgeom::Angle
Angle represents an angle in radians.
Definition: Angle.h:43
lsst::sphgeom::Vector3d::operator-
Vector3d operator-() const
The unary minus operator negates every component of this vector.
Definition: Vector3d.h:108
lsst::sphgeom::operator<<
std::ostream & operator<<(std::ostream &, Angle const &)
Definition: Angle.cc:34
lsst::sphgeom::Vector3d::operator/=
Vector3d & operator/=(double s)
Definition: Vector3d.h:145
lsst::sphgeom::Vector3d::operator==
bool operator==(Vector3d const &v) const
Definition: Vector3d.h:52
lsst::sphgeom::Vector3d::x
double x() const
Definition: Vector3d.h:66