LSST Applications
21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
|
A class that computes binomial coefficients up to a certain power. More...
#include <BinomialMatrix.h>
Public Member Functions | |
BinomialMatrix (int nMax) | |
Construct an object that can compute binomial coefficients with \(n\) up to and including the given value. More... | |
double | operator() (int n, int k) const |
Return the binomial coefficient. More... | |
A class that computes binomial coefficients up to a certain power.
The binomial coefficient is defined as:
\[ \left(\begin{array}{ c } n \\ k \end{array}\right) = \frac{n!}{k!(n-k)!} \]
with both \(n\) and \(k\) nonnegative integers and \(k \le n\)
This class uses recurrence relations to avoid computing factorials directly, making it both more efficient and numerically stable.
Definition at line 45 of file BinomialMatrix.h.
|
explicit |
Construct an object that can compute binomial coefficients with \(n\) up to and including the given value.
Definition at line 27 of file BinomialMatrix.cc.
|
inline |
Return the binomial coefficient.
No error checking is performed; the behavior of this method is undefined if the given values do not satisfy
Definition at line 63 of file BinomialMatrix.h.