LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
imageStatistics.cc
// -*- LSST-C++ -*-
/*
* LSST Data Management System
* Copyright 2008, 2009, 2010 LSST Corporation.
*
* This product includes software developed by the
* LSST Project (http://www.lsst.org/).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the LSST License Statement and
* the GNU General Public License along with this program. If not,
* see <http://www.lsstcorp.org/LegalNotices/>.
*/
#include <cmath>
#include <iostream>
#include <limits>
#include <memory>
#include "lsst/geom.h"
namespace image = lsst::afw::image;
namespace math = lsst::afw::math;
using MaskedImageF = image::MaskedImage<float>;
using ImgStat = math::Statistics;
using MaskedVectorF = math::MaskedVector<float>;
/*
* An example of how to use the Statistics class
*/
template <typename Image>
void printStats(Image &img, math::StatisticsControl const &sctrl) {
// initialize a Statistics object with any stats we might want
ImgStat stats = math::makeStatistics(
img,
sctrl);
// get various stats with getValue() and their errors with getError()
double const npoint = stats.getValue(math::NPOINT);
double const mean = stats.getValue(math::MEAN);
double const var = stats.getValue(math::VARIANCE);
double const dmean = stats.getError(math::MEAN);
double const sd = stats.getValue(math::STDEV);
double const min = stats.getValue(math::MIN);
double const max = stats.getValue(math::MAX);
double const meanclip = stats.getValue(math::MEANCLIP);
double const varclip = stats.getValue(math::VARIANCECLIP);
double const stdevclip = stats.getValue(math::STDEVCLIP);
double const median = stats.getValue(math::MEDIAN);
double const iqrange = stats.getValue(math::IQRANGE);
// output
std::cout << "N " << npoint << std::endl;
std::cout << "dmean " << dmean << std::endl;
std::cout << "mean: " << mean << std::endl;
std::cout << "meanclip: " << meanclip << std::endl;
std::cout << "var: " << var << std::endl;
std::cout << "varclip: " << varclip << std::endl;
std::cout << "stdev: " << sd << std::endl;
std::cout << "stdevclip: " << stdevclip << std::endl;
std::cout << "min: " << min << std::endl;
std::cout << "max: " << max << std::endl;
std::cout << "median: " << median << std::endl;
std::cout << "iqrange: " << iqrange << std::endl;
}
int main() {
// declare an image and a masked image
int const wid = 1024;
ImageF img(lsst::geom::Extent2I(wid, wid));
MaskedImageF mimg(img.getDimensions());
MaskedVectorF mv(wid * wid);
// fill it with some noise (Cauchy noise in this case)
for (int j = 0; j != img.getHeight(); ++j) {
int k = 0;
MaskedImageF::x_iterator mip = mimg.row_begin(j);
for (ImageF::x_iterator ip = img.row_begin(j); ip != img.row_end(j); ++ip) {
double const xUniform = M_PI * static_cast<ImageF::Pixel>(std::rand()) / RAND_MAX;
double xLorentz = xUniform; // tan(xUniform - M_PI/2.0);
// throw in the occassional nan ... 1% of the time
if (static_cast<double>(std::rand()) / RAND_MAX < 0.01) {
xLorentz = NAN;
}
*ip = xLorentz;
// mask the odd rows
// variance actually diverges for Cauchy noise ... but stats doesn't access this.
*mip = MaskedImageF::Pixel(xLorentz, (k % 2) ? 0x1 : 0x0, (k % 2) ? 1.0e99 : 1.0);
v.push_back(xLorentz);
++k;
++mip;
}
}
int j = 0;
for (MaskedVectorF::iterator mvp = mv.begin(); mvp != mv.end(); ++mvp) {
*mvp = MaskedVectorF::Pixel(v[j], (j % 2) ? 0x1 : 0x0, 10.0);
++j;
}
std::shared_ptr<std::vector<float> > vF = mv.getVector();
// make a statistics control object and override some of the default properties
math::StatisticsControl sctrl;
sctrl.setNumIter(3);
sctrl.setNumSigmaClip(5.0);
sctrl.setAndMask(0x1); // pixels with this mask bit set will be ignored.
sctrl.setNanSafe(true);
// ==================================================================
// Get stats for the Image, MaskedImage, and vector
std::cout << "image::Image" << std::endl;
printStats(img, sctrl);
std::cout << "image::MaskedImage" << std::endl;
printStats(mimg, sctrl);
std::cout << "std::vector" << std::endl;
printStats(v, sctrl);
std::cout << "image::MaskedVector" << std::endl;
printStats(mv, sctrl);
std::cout << "image::MaskedVector::getVector()" << std::endl;
printStats(*vF, sctrl);
// Now try the weighted statistics
sctrl.setWeighted(true);
sctrl.setAndMask(0x0);
std::cout << "image::MaskedImage (weighted)" << std::endl;
printStats(mimg, sctrl);
// Now try the specialization to get NPOINT and SUM (bitwise OR) for an image::Mask
math::Statistics mskstat = makeStatistics(*mimg.getMask(), (math::NPOINT | math::SUM), sctrl);
std::cout << "image::Mask" << std::endl;
std::cout << mskstat.getValue(math::NPOINT) << " " << mskstat.getValue(math::SUM) << std::endl;
return 0;
}
int min
int max
afw::table::Key< afw::table::Array< ImagePixelT > > image
#define M_PI
Definition: ListMatch.cc:31
A class to represent a 2-dimensional array of pixels.
Definition: Image.h:51
A class to manipulate images, masks, and variance as a single object.
Definition: MaskedImage.h:73
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition: Statistics.h:359
T endl(T... args)
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition: Statistics.h:359
@ ERRORS
Include errors of requested quantities.
Definition: Statistics.h:64
@ VARIANCECLIP
estimate sample N-sigma clipped variance (N set in StatisticsControl, default=3)
Definition: Statistics.h:73
@ MIN
estimate sample minimum
Definition: Statistics.h:75
@ STDEV
estimate sample standard deviation
Definition: Statistics.h:67
@ STDEVCLIP
estimate sample N-sigma clipped stdev (N set in StatisticsControl, default=3)
Definition: Statistics.h:72
@ VARIANCE
estimate sample variance
Definition: Statistics.h:68
@ MEDIAN
estimate sample median
Definition: Statistics.h:69
@ MAX
estimate sample maximum
Definition: Statistics.h:76
@ SUM
find sum of pixels in the image
Definition: Statistics.h:77
@ IQRANGE
estimate sample inter-quartile range
Definition: Statistics.h:70
@ MEAN
estimate sample mean
Definition: Statistics.h:66
@ MEANCLIP
estimate sample N-sigma clipped mean (N set in StatisticsControl, default=3)
Definition: Statistics.h:71
@ NPOINT
number of sample points
Definition: Statistics.h:65
afw::image::Image< float > ImageF
Definition: VeresModel.cc:35
float Pixel
Typedefs to be used for pixel values.
Definition: common.h:37
T rand(T... args)