| 
    LSST Applications
    21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
    
   LSST Data Management Base Package 
   | 
 
Namespaces | |
| cmodel | |
| common | |
| detail | |
| display | |
| optimizer | |
| pixelFitRegion | |
| priors | |
| psf | |
| version | |
Classes | |
| class | ImportanceSamplerControl | 
| Control object for one iteration of adaptive importance sampling.  More... | |
| class | AdaptiveImportanceSampler | 
| Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distribution from which points are drawn.  More... | |
| struct | CModelStageControl | 
| Nested control object for CModel that configures one of the three ("initial", "exp", "dev") nonlinear fitting stages.  More... | |
| struct | CModelControl | 
| The main control object for CModel, containing parameters for the final linear fit and aggregating the other control objects.  More... | |
| struct | CModelStageResult | 
| Result object for a single nonlinear fitting stage of the CModel algorithm.  More... | |
| struct | CModelResult | 
| Master result object for CModel, containing results for the final linear fit and three nested CModelStageResult objects for the results of the previous stages.  More... | |
| class | CModelAlgorithm | 
| Main public interface class for CModel algorithm.  More... | |
| class | DoubleShapeletPsfApproxControl | 
| Control object used to configure a 2-shapelet fit to a PSF model; see DoubleShapeletPsfApproxAlgorithm.  More... | |
| class | DoubleShapeletPsfApproxAlgorithm | 
| An algorithm that fits a 2-component shapelet approximation to the PSF model.  More... | |
| class | GeneralPsfFitterComponentControl | 
| Control object used to define one piece of multishapelet fit to a PSF model; see GeneralPsfFitterControl.  More... | |
| class | GeneralPsfFitterControl | 
| Control object used to configure a multishapelet fit to a PSF model; see GeneralPsfFitter.  More... | |
| class | GeneralPsfFitter | 
| Class for fitting multishapelet models to PSF images.  More... | |
| class | GeneralPsfFitterAlgorithm | 
| class | MultiShapeletPsfLikelihood | 
| Likelihood object used to fit multishapelet models to PSF model images; mostly for internal use by GeneralPsfFitter.  More... | |
| class | Likelihood | 
| Base class for optimizer/sampler likelihood functions that compute likelihood at a point.  More... | |
| class | MixtureComponent | 
| A weighted Student's T or Gaussian distribution used as a component in a Mixture.  More... | |
| class | MixtureUpdateRestriction | 
| Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM.  More... | |
| class | Mixture | 
| class | MixturePrior | 
| A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters.  More... | |
| class | Model | 
| Abstract base class and concrete factories that define multi-shapelet galaxy models.  More... | |
| class | MultiModel | 
| A concrete Model class that simply concatenates several other Models.  More... | |
| class | OptimizerObjective | 
| Base class for objective functions for Optimizer.  More... | |
| class | OptimizerControl | 
| Configuration object for Optimizer.  More... | |
| class | OptimizerHistoryRecorder | 
| class | Optimizer | 
| A numerical optimizer customized for least-squares problems with Bayesian priors.  More... | |
| struct | PixelFitRegionControl | 
| class | PixelFitRegion | 
| class | Prior | 
| Base class for Bayesian priors.  More... | |
| class | SamplingObjective | 
| class | Sampler | 
| struct | SemiEmpiricalPriorControl | 
| class | SemiEmpiricalPrior | 
| A piecewise prior motivated by both real distributions and practical considerations.  More... | |
| struct | SoftenedLinearPriorControl | 
| class | SoftenedLinearPrior | 
| A prior that's linear in radius and flat in ellipticity, with a cubic roll-off at the edges.  More... | |
| class | TruncatedGaussian | 
| Represents a multidimensional Gaussian function truncated at zero.  More... | |
| class | TruncatedGaussianLogEvaluator | 
| Helper class for evaluating the -log of a TruncatedGaussian.  More... | |
| class | TruncatedGaussianEvaluator | 
| Helper class for evaluating the -log of a TruncatedGaussian.  More... | |
| class | TruncatedGaussianSampler | 
| Helper class for drawing samples from a TruncatedGaussian.  More... | |
| struct | UnitSystem | 
| A simple struct that combines a Wcs and a PhotoCalib.  More... | |
| struct | LocalUnitTransform | 
| A local mapping between two UnitSystems.  More... | |
| class | UnitTransformedLikelihoodControl | 
| Control object used to initialize a UnitTransformedLikelihood.  More... | |
| class | EpochFootprint | 
| An image at one epoch of a galaxy, plus associated info.  More... | |
| class | UnitTransformedLikelihood | 
| A concrete Likelihood class that does not require its parameters and data to be in the same UnitSystem.  More... | |
Typedefs | |
| typedef float | Pixel | 
| Typedefs to be used for pixel values.  More... | |
| typedef double | Scalar | 
| Typedefs to be used for probability and parameter values.  More... | |
| typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > | Matrix | 
| typedef Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > | Vector | 
| typedef afw::table::Key< Scalar > | ScalarKey | 
| typedef afw::table::Key< afw::table::Array< Scalar > > | ArrayKey | 
| typedef std::vector< std::shared_ptr< Model > > | ModelVector | 
Functions | |
| void | solveTrustRegion (ndarray::Array< Scalar, 1, 1 > const &x, ndarray::Array< Scalar const, 2, 1 > const &F, ndarray::Array< Scalar const, 1, 1 > const &g, double r, double tolerance) | 
| Solve a symmetric quadratic matrix equation with a ball constraint.  More... | |
| typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> lsst::meas::modelfit::Matrix | 
| typedef float lsst::meas::modelfit::Pixel | 
Typedefs to be used for pixel values.
| typedef double lsst::meas::modelfit::Scalar | 
| typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> lsst::meas::modelfit::Vector | 
| void lsst::meas::modelfit::solveTrustRegion | ( | ndarray::Array< Scalar, 1, 1 > const & | x, | 
| ndarray::Array< Scalar const, 2, 1 > const & | F, | ||
| ndarray::Array< Scalar const, 1, 1 > const & | g, | ||
| double | r, | ||
| double | tolerance | ||
| ) | 
Solve a symmetric quadratic matrix equation with a ball constraint.
This computes a near-exact solution to the "trust region subproblem" necessary in trust-region-based nonlinear optimizers:
\[ \min_x{\quad g^T x + \frac{1}{2}x^T F x}\quad\quad\quad \text{s.t.} ||x|| \le r \]
The tolerance parameter sets how close to \(r\) we require the norm of the solution to be when it lies on the constraint, as a fraction of \(r\) itself.
This implementation is based on the algorithm described in Section 4.3 of "Nonlinear Optimization" by Nocedal and Wright.