LSST Applications
21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
|
Classes | |
class | ObjectTestCase |
class | MappingTestCase |
Functions | |
def | makePolyMapCoeffs (nIn, nOut) |
def | makeTwoWayPolyMap (nIn, nOut) |
def | makeForwardPolyMap (nIn, nOut) |
def astshim.test.makeForwardPolyMap | ( | nIn, | |
nOut | |||
) |
Make an astshim.PolyMap suitable for testing The forward transform is the same as for `makeTwoWayPolyMap`. This map does not have a reverse transform. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 313 of file test.py.
def astshim.test.makePolyMapCoeffs | ( | nIn, | |
nOut | |||
) |
def astshim.test.makeTwoWayPolyMap | ( | nIn, | |
nOut | |||
) |
Make an astshim.PolyMap suitable for testing The forward transform is as follows: fj(x) = C0j x0^2 + C1j x1^2 + C2j x2^2 + ... + CNj xN^2 where Cij = 0.001 (i+j+1) The reverse transform is the same equation with i and j reversed thus it is NOT the inverse of the forward direction, but is something that can be easily evaluated. The equation is chosen for the following reasons: - It is well defined for any positive value of nIn, nOut. - It stays small for small x, to avoid wraparound of angles for SpherePoint endpoints.
Definition at line 287 of file test.py.