LSSTApplications
21.0.0+1b62c9342b,21.0.0+45a059f35e,21.0.0-1-ga51b5d4+ceb9cf20a3,21.0.0-19-g7c7630f+a88ebbf2d9,21.0.0-2-g103fe59+3522cf3bc7,21.0.0-2-g1367e85+571a348718,21.0.0-2-g2909d54+45a059f35e,21.0.0-2-g45278ab+1b62c9342b,21.0.0-2-g4bc9b9f+35a70d5868,21.0.0-2-g5242d73+571a348718,21.0.0-2-g54e2caa+aa129c4686,21.0.0-2-g66bcc37+3caef57c29,21.0.0-2-g7f82c8f+6f9059e2fe,21.0.0-2-g8dde007+5d1b9cb3f5,21.0.0-2-g8f08a60+73884b2cf5,21.0.0-2-g973f35b+1d054a08b9,21.0.0-2-ga326454+6f9059e2fe,21.0.0-2-ga63a54e+3d2c655db6,21.0.0-2-gc738bc1+a567cb0f17,21.0.0-2-gde069b7+5a8f2956b8,21.0.0-2-ge17e5af+571a348718,21.0.0-2-ge712728+834f2a3ece,21.0.0-2-gecfae73+dfe6e80958,21.0.0-2-gfc62afb+571a348718,21.0.0-21-g006371a9+88174a2081,21.0.0-3-g4c5b185+7fd31a6834,21.0.0-3-g6d51c4a+3caef57c29,21.0.0-3-gaa929c8+55f5a6a5c9,21.0.0-3-gd222c45+afc8332dbe,21.0.0-3-gd5de2f2+3caef57c29,21.0.0-4-g3300ddd+1b62c9342b,21.0.0-4-g5873dc9+9a92674037,21.0.0-4-g8a80011+5955f0fd15,21.0.0-5-gb7080ec+8658c79ec4,21.0.0-5-gcff38f6+89f2a0074d,21.0.0-6-gd3283ba+55f5a6a5c9,21.0.0-8-g19111d86+2c4b0a9f47,21.0.0-9-g7bed000b9+c7d3cce47e,w.2021.03
LSSTDataManagementBasePackage
|
Classes | |
class | CovFft |
class | LoadParams |
Functions | |
def | fftSize (s) |
def | computeCovDirect (diffImage, weightImage, maxRange) |
def | covDirectValue (diffImage, weightImage, dx, dy) |
def | loadData (tupleName, params, expIdMask) |
def | fitData (tupleName, expIdMask, r=8) |
def | getFitDataFromCovariances (i, j, mu, fullCov, fullCovModel, fullCovSqrtWeights, gain=1.0, divideByMu=False, returnMasked=False) |
def lsst.cp.pipe.astierCovPtcUtils.computeCovDirect | ( | diffImage, | |
weightImage, | |||
maxRange | |||
) |
Compute covariances of diffImage in real space. For lags larger than ~25, it is slower than the FFT way. Taken from https://github.com/PierreAstier/bfptc/ Parameters ---------- diffImage : `numpy.array` Image to compute the covariance of. weightImage : `numpy.array` Weight image of diffImage (1's and 0's for good and bad pixels, respectively). maxRange : `int` Last index of the covariance to be computed. Returns ------- outList : `list` List with tuples of the form (dx, dy, var, cov, npix), where: dx : `int` Lag in x dy : `int` Lag in y var : `float` Variance at (dx, dy). cov : `float` Covariance at (dx, dy). nPix : `int` Number of pixel pairs used to evaluate var and cov.
Definition at line 128 of file astierCovPtcUtils.py.
def lsst.cp.pipe.astierCovPtcUtils.covDirectValue | ( | diffImage, | |
weightImage, | |||
dx, | |||
dy | |||
) |
Compute covariances of diffImage in real space at lag (dx, dy). Taken from https://github.com/PierreAstier/bfptc/ (c.f., appendix of Astier+19). Parameters ---------- diffImage : `numpy.array` Image to compute the covariance of. weightImage : `numpy.array` Weight image of diffImage (1's and 0's for good and bad pixels, respectively). dx : `int` Lag in x. dy : `int` Lag in y. Returns ------- cov : `float` Covariance at (dx, dy) nPix : `int` Number of pixel pairs used to evaluate var and cov.
Definition at line 179 of file astierCovPtcUtils.py.
def lsst.cp.pipe.astierCovPtcUtils.fftSize | ( | s | ) |
Calculate the size fof one dimension for the FFT
Definition at line 122 of file astierCovPtcUtils.py.
def lsst.cp.pipe.astierCovPtcUtils.fitData | ( | tupleName, | |
expIdMask, | |||
r = 8 |
|||
) |
Fit data to models in Astier+19. Parameters ---------- tupleName: `numpy.recarray` Recarray with rows with at least ( mu1, mu2, cov ,var, i, j, npix), where: mu1: mean value of flat1 mu2: mean value of flat2 cov: covariance value at lag (i, j) var: variance (covariance value at lag (0, 0)) i: lag dimension j: lag dimension npix: number of pixels used for covariance calculation. expIdMask : `dict`, [`str`, `list`] Dictionary keyed by amp names containing the masked exposure pairs. r: `int`, optional Maximum lag considered (e.g., to eliminate data beyond a separation "r": ignored in the fit). Returns ------- covFitList: `dict` Dictionary of CovFit objects, with amp names as keys. covFitNoBList: `dict` Dictionary of CovFit objects, with amp names as keys (b=0 in Eq. 20 of Astier+19). Notes ----- The parameters of the full model for C_ij(mu) ("C_ij" and "mu" in ADU^2 and ADU, respectively) in Astier+19 (Eq. 20) are: "a" coefficients (r by r matrix), units: 1/e "b" coefficients (r by r matrix), units: 1/e noise matrix (r by r matrix), units: e^2 gain, units: e/ADU "b" appears in Eq. 20 only through the "ab" combination, which is defined in this code as "c=ab".
Definition at line 310 of file astierCovPtcUtils.py.
def lsst.cp.pipe.astierCovPtcUtils.getFitDataFromCovariances | ( | i, | |
j, | |||
mu, | |||
fullCov, | |||
fullCovModel, | |||
fullCovSqrtWeights, | |||
gain = 1.0 , |
|||
divideByMu = False , |
|||
returnMasked = False |
|||
) |
Get measured signal and covariance, cov model, weigths, and mask at covariance lag (i, j). Parameters ---------- i : `int` Lag for covariance matrix. j: `int` Lag for covariance matrix. mu : `list` Mean signal values. fullCov: `list` of `numpy.array` Measured covariance matrices at each mean signal level in mu. fullCovSqrtWeights: `list` of `numpy.array` List of square root of measured covariances at each mean signal level in mu. fullCovModel : `list` of `numpy.array` List of modeled covariances at each mean signal level in mu. gain : `float`, optional Gain, in e-/ADU. If other than 1.0 (default), the returned quantities will be in electrons or powers of electrons. divideByMu: `bool`, optional Divide returned covariance, model, and weights by the mean signal mu? returnMasked : `bool`, optional Use mask (based on weights) in returned arrays (mu, covariance, and model)? Returns ------- mu : `numpy.array` list of signal values at (i, j). covariance : `numpy.array` Covariance at (i, j) at each mean signal mu value (fullCov[:, i, j]). covarianceModel : `numpy.array` Covariance model at (i, j). weights : `numpy.array` Weights at (i, j). maskFromWeights : `numpy.array`, optional Boolean mask of the covariance at (i,j), where the weights differ from 0. Notes ----- This function is a method of the `CovFit` class.
Definition at line 365 of file astierCovPtcUtils.py.
def lsst.cp.pipe.astierCovPtcUtils.loadData | ( | tupleName, | |
params, | |||
expIdMask | |||
) |
Returns a list of CovFit objects, indexed by amp number. Params ------ tupleName: `numpy.recarray` Recarray with rows with at least ( mu1, mu2, cov ,var, i, j, npix), where: mu1: mean value of flat1 mu2: mean value of flat2 cov: covariance value at lag (i, j) var: variance (covariance value at lag (0, 0)) i: lag dimension j: lag dimension npix: number of pixels used for covariance calculation. params: `covAstierptcUtil.LoadParams` Object with values to drive the bahaviour of fits. expIdMask : `dict`, [`str`, `list`] Dictionary keyed by amp names containing the masked exposure pairs. Returns ------- covFitList: `dict` Dictionary with amps as keys, and CovFit objects as values.
Definition at line 265 of file astierCovPtcUtils.py.