LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
Functions | Variables
lsst::meas::algorithms::interp Namespace Reference

Functions

template<typename MaskedImageT >
std::pair< bool, typename MaskedImageT::Image::Pixel > singlePixel (int x, int y, MaskedImageT const &image, bool horizontal, double minval)
 Return a boolean status (true: interpolation is OK) and the interpolated value for a pixel, ignoring pixels given by badmask. More...
 

Variables

double const lpc_1_c1 = 0.7737
 LPC coefficients for sigma = 1, S/N = infty. More...
 
double const lpc_1_c2 = -0.2737
 
double const lpc_1s2_c1 = 0.7358
 LPC coefficients for sigma = 1/sqrt(2), S/N = infty. More...
 
double const lpc_1s2_c2 = -0.2358
 
double const min2GaussianBias = -0.5641895835
 Mean value of the minimum of two N(0,1) variates. More...
 

Function Documentation

◆ singlePixel()

template<typename MaskedImageT >
std::pair< bool, typename MaskedImageT::Image::Pixel > lsst::meas::algorithms::interp::singlePixel ( int  x,
int  y,
MaskedImageT const &  image,
bool  horizontal,
double  minval 
)

Return a boolean status (true: interpolation is OK) and the interpolated value for a pixel, ignoring pixels given by badmask.

Interpolation can either be vertical or horizontal

Note
: This is a pretty expensive routine, so use only after suitable thought.
Parameters
xx: column coordinate of the pixel in question
yy: row coordinate of the pixel in question
imageimage: in this image
horizontalhorizontal: interpolate horizontally?
minvalminval: minimum acceptable value

Definition at line 2125 of file Interp.cc.

2131  {
2132 #if defined(SDSS)
2133  BADCOLUMN defect; /* describe a bad column */
2134  PIX *data; /* temp array to interpolate in */
2135  int i;
2136  int i0, i1; /* data corresponds to range of
2137  {row,col} == [i0,i1] */
2138  int ndata; /* dimension of data */
2139  static int ndatamax = 40; /* largest allowable defect. XXX */
2140  int nrow, ncol; /* == reg->n{row,col} */
2141  PIX *val; /* pointer to pixel (rowc, colc) */
2142  int z1, z2; /* range of bad {row,columns} */
2143 
2144  shAssert(badmask != NULL && badmask->type == shTypeGetFromName("OBJMASK"));
2145  shAssert(reg != NULL && reg->type == TYPE_PIX);
2146  nrow = reg->nrow;
2147  ncol = reg->ncol;
2148 
2149  if (horizontal) {
2150  for (z1 = colc - 1; z1 >= 0; z1--) {
2151  if (!phPixIntersectMask(badmask, z1, rowc)) {
2152  break;
2153  }
2154  }
2155  z1++;
2156 
2157  for (z2 = colc + 1; z2 < ncol; z2++) {
2158  if (!phPixIntersectMask(badmask, z2, rowc)) {
2159  break;
2160  }
2161  }
2162  z2--;
2163 
2164  i0 = (z1 > 2) ? z1 - 2 : 0; /* origin of available required data */
2165  i1 = (z2 < ncol - 2) ? z2 + 2 : ncol - 1; /* end of " " " " */
2166 
2167  if (i0 < 2 || i1 >= ncol - 2) { /* interpolation will fail */
2168  return (-1); /* failure */
2169  }
2170 
2171  ndata = (i1 - i0 + 1);
2172  if (ndata > ndatamax) {
2173  return (-1); /* failure */
2174  }
2175 
2176  data = alloca(ndata * sizeof(PIX));
2177  for (i = i0; i <= i1; i++) {
2178  data[i - i0] = reg->ROWS[rowc][i];
2179  }
2180  val = &data[colc - i0];
2181  } else {
2182  for (z1 = rowc - 1; z1 >= 0; z1--) {
2183  if (!phPixIntersectMask(badmask, colc, z1)) {
2184  break;
2185  }
2186  }
2187  z1++;
2188 
2189  for (z2 = rowc + 1; z2 < nrow; z2++) {
2190  if (!phPixIntersectMask(badmask, colc, z2)) {
2191  break;
2192  }
2193  }
2194  z2--;
2195 
2196  i0 = (z1 > 2) ? z1 - 2 : 0; /* origin of available required data */
2197  i1 = (z2 < nrow - 2) ? z2 + 2 : nrow - 1; /* end of " " " " */
2198 
2199  if (i0 < 2 || i1 >= ncol - 2) { /* interpolation will fail */
2200  return (-1); /* failure */
2201  }
2202 
2203  ndata = (i1 - i0 + 1);
2204  if (ndata > ndatamax) {
2205  return (-1); /* failure */
2206  }
2207 
2208  data = alloca(ndata * sizeof(PIX));
2209  for (i = i0; i <= i1; i++) {
2210  data[i - i0] = reg->ROWS[i][colc];
2211  }
2212  val = &data[rowc - i0];
2213  }
2214 
2215  defect.x1 = z1 - i0;
2216  defect.x2 = z2 - i0;
2217  classify_defects(&defect, 1, ndata);
2218  do_defect(&defect, 1, data, ndata, minval);
2219 
2220  return (*val);
2221 #endif
2222 
2224 }
char * data
Definition: BaseRecord.cc:61
T make_pair(T... args)
ImageT val
Definition: CR.cc:146

Variable Documentation

◆ lpc_1_c1

double const lsst::meas::algorithms::interp::lpc_1_c1 = 0.7737

LPC coefficients for sigma = 1, S/N = infty.

Definition at line 51 of file Interp.h.

◆ lpc_1_c2

double const lsst::meas::algorithms::interp::lpc_1_c2 = -0.2737

Definition at line 52 of file Interp.h.

◆ lpc_1s2_c1

double const lsst::meas::algorithms::interp::lpc_1s2_c1 = 0.7358

LPC coefficients for sigma = 1/sqrt(2), S/N = infty.

These are the coeffs to use when interpolating at 45degrees to the row/column

Definition at line 57 of file Interp.h.

◆ lpc_1s2_c2

double const lsst::meas::algorithms::interp::lpc_1s2_c2 = -0.2358

Definition at line 58 of file Interp.h.

◆ min2GaussianBias

double const lsst::meas::algorithms::interp::min2GaussianBias = -0.5641895835

Mean value of the minimum of two N(0,1) variates.

Definition at line 62 of file Interp.h.