LSST Applications
21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
|
Classes | |
class | BackgroundConfig |
class | SkyStatsConfig |
class | SkyMeasurementConfig |
class | SkyMeasurementTask |
class | FocalPlaneBackgroundConfig |
class | FocalPlaneBackground |
class | MaskObjectsConfig |
class | MaskObjectsTask |
Functions | |
def | robustMean (array, rej=3.0) |
def | interpolate1D (method, xSample, ySample, xInterp) |
def | interpolateBadPixels (array, isBad, interpolationStyle) |
def | smoothArray (array, bad, sigma) |
def lsst.pipe.drivers.background.interpolate1D | ( | method, | |
xSample, | |||
ySample, | |||
xInterp | |||
) |
Interpolate in one dimension Interpolates the curve provided by `xSample` and `ySample` at the positions of `xInterp`. Automatically backs off the interpolation method to achieve successful interpolation. Parameters ---------- method : `lsst.afw.math.Interpolate.Style` Interpolation method to use. xSample : `numpy.ndarray` Vector of ordinates. ySample : `numpy.ndarray` Vector of coordinates. xInterp : `numpy.ndarray` Vector of ordinates to which to interpolate. Returns ------- yInterp : `numpy.ndarray` Vector of interpolated coordinates.
Definition at line 376 of file background.py.
def lsst.pipe.drivers.background.interpolateBadPixels | ( | array, | |
isBad, | |||
interpolationStyle | |||
) |
Interpolate bad pixels in an image array The bad pixels are modified in the array. Parameters ---------- array : `numpy.ndarray` Image array with bad pixels. isBad : `numpy.ndarray` of type `bool` Boolean array indicating which pixels are bad. interpolationStyle : `str` Style for interpolation (see `lsst.afw.math.Background`); supported values are CONSTANT, LINEAR, NATURAL_SPLINE, AKIMA_SPLINE.
Definition at line 415 of file background.py.
def lsst.pipe.drivers.background.robustMean | ( | array, | |
rej = 3.0 |
|||
) |
Measure a robust mean of an array Parameters ---------- array : `numpy.ndarray` Array for which to measure the mean. rej : `float` k-sigma rejection threshold. Returns ------- mean : `array.dtype` Robust mean of `array`.
Definition at line 17 of file background.py.
def lsst.pipe.drivers.background.smoothArray | ( | array, | |
bad, | |||
sigma | |||
) |
Gaussian-smooth an array while ignoring bad pixels It's not sufficient to set the bad pixels to zero, as then they're treated as if they are zero, rather than being ignored altogether. We need to apply a correction to that image that removes the effect of the bad pixels. Parameters ---------- array : `numpy.ndarray` of floating-point Array to smooth. bad : `numpy.ndarray` of `bool` Flag array indicating bad pixels. sigma : `float` Gaussian sigma. Returns ------- convolved : `numpy.ndarray` Smoothed image.
Definition at line 849 of file background.py.