LSST Applications  21.0.0-172-gfb10e10a+18fedfabac,22.0.0+297cba6710,22.0.0+80564b0ff1,22.0.0+8d77f4f51a,22.0.0+a28f4c53b1,22.0.0+dcf3732eb2,22.0.1-1-g7d6de66+2a20fdde0d,22.0.1-1-g8e32f31+297cba6710,22.0.1-1-geca5380+7fa3b7d9b6,22.0.1-12-g44dc1dc+2a20fdde0d,22.0.1-15-g6a90155+515f58c32b,22.0.1-16-g9282f48+790f5f2caa,22.0.1-2-g92698f7+dcf3732eb2,22.0.1-2-ga9b0f51+7fa3b7d9b6,22.0.1-2-gd1925c9+bf4f0e694f,22.0.1-24-g1ad7a390+a9625a72a8,22.0.1-25-g5bf6245+3ad8ecd50b,22.0.1-25-gb120d7b+8b5510f75f,22.0.1-27-g97737f7+2a20fdde0d,22.0.1-32-gf62ce7b1+aa4237961e,22.0.1-4-g0b3f228+2a20fdde0d,22.0.1-4-g243d05b+871c1b8305,22.0.1-4-g3a563be+32dcf1063f,22.0.1-4-g44f2e3d+9e4ab0f4fa,22.0.1-42-gca6935d93+ba5e5ca3eb,22.0.1-5-g15c806e+85460ae5f3,22.0.1-5-g58711c4+611d128589,22.0.1-5-g75bb458+99c117b92f,22.0.1-6-g1c63a23+7fa3b7d9b6,22.0.1-6-g50866e6+84ff5a128b,22.0.1-6-g8d3140d+720564cf76,22.0.1-6-gd805d02+cc5644f571,22.0.1-8-ge5750ce+85460ae5f3,master-g6e05de7fdc+babf819c66,master-g99da0e417a+8d77f4f51a,w.2021.48
LSST Data Management Base Package
Functions
lsst.shapelet.tractor Namespace Reference

Functions

def registerRadialProfiles ()
 
def evaluateRadial (basis, r, sbNormalize=False, doComponents=False)
 
def integrateNormalizedFluxes (maxRadius=20.0, nSteps=5000)
 
def plotSuite (doComponents=False)
 

Function Documentation

◆ evaluateRadial()

def lsst.shapelet.tractor.evaluateRadial (   basis,
  r,
  sbNormalize = False,
  doComponents = False 
)
Plot a single-element MultiShapeletBasis as a radial profile.

Parameters
----------
sbNormalize : `bool`
    `True` to normalize.
doComponents : `bool`
    `True` to evaluate components.

Definition at line 86 of file tractor.py.

86 def evaluateRadial(basis, r, sbNormalize=False, doComponents=False):
87  """Plot a single-element MultiShapeletBasis as a radial profile.
88 
89  Parameters
90  ----------
91  sbNormalize : `bool`
92  `True` to normalize.
93  doComponents : `bool`
94  `True` to evaluate components.
95  """
97  coefficients = numpy.ones(1, dtype=float)
98  msf = basis.makeFunction(ellipse, coefficients)
99  ev = msf.evaluate()
100  n = 1
101  if doComponents:
102  n += len(msf.getComponents())
103  z = numpy.zeros((n,) + r.shape, dtype=float)
104  for j, x in enumerate(r):
105  z[0, j] = ev(x, 0.0)
106  if doComponents:
107  for i, sf in enumerate(msf.getComponents()):
108  evc = sf.evaluate()
109  for j, x in enumerate(r):
110  z[i+1, j] = evc(x, 0.0)
111  if sbNormalize:
112  z /= ev(1.0, 0.0)
113  return z
114 
115 
An ellipse core for the semimajor/semiminor axis and position angle parametrization (a,...
Definition: Axes.h:47
An ellipse defined by an arbitrary BaseCore and a center point.
Definition: Ellipse.h:51
def evaluateRadial(basis, r, sbNormalize=False, doComponents=False)
Definition: tractor.py:86

◆ integrateNormalizedFluxes()

def lsst.shapelet.tractor.integrateNormalizedFluxes (   maxRadius = 20.0,
  nSteps = 5000 
)
Integrate the profiles to compare relative fluxes between the true profiles
and their approximations.

After normalizing by surface brightness at r=1 r_e, integrate the profiles to compare
relative fluxes between the true profiles and their approximations.

Parameters
----------
maxRadius : `float`, optional
    Maximum radius to integrate the profile, in units of r_e.
nSteps : `int`, optional
    Number of concrete points at which to evaluate the profile to
    do the integration (we just use the trapezoidal rule).

Returns
-------
fluxes : `dict` of `float` values
    Dictionary of fluxes (``exp``, ``lux``, ``dev``, ``luv``, ``ser2``, ``ser3``,
    ``ser5``, ``gexp``,  ``glux``, ``gdev``, ``gluv``, ``gser2``, ``gser3``, ``gser5``)

Definition at line 116 of file tractor.py.

116 def integrateNormalizedFluxes(maxRadius=20.0, nSteps=5000):
117  """Integrate the profiles to compare relative fluxes between the true profiles
118  and their approximations.
119 
120  After normalizing by surface brightness at r=1 r_e, integrate the profiles to compare
121  relative fluxes between the true profiles and their approximations.
122 
123  Parameters
124  ----------
125  maxRadius : `float`, optional
126  Maximum radius to integrate the profile, in units of r_e.
127  nSteps : `int`, optional
128  Number of concrete points at which to evaluate the profile to
129  do the integration (we just use the trapezoidal rule).
130 
131  Returns
132  -------
133  fluxes : `dict` of `float` values
134  Dictionary of fluxes (``exp``, ``lux``, ``dev``, ``luv``, ``ser2``, ``ser3``,
135  ``ser5``, ``gexp``, ``glux``, ``gdev``, ``gluv``, ``gser2``, ``gser3``, ``gser5``)
136  """
137  radii = numpy.linspace(0.0, maxRadius, nSteps)
138  profiles = {name: RadialProfile.get(name) for name in ("exp", "lux", "dev", "luv",
139  "ser2", "ser3", "ser5")}
140  evaluated = {}
141  for name, profile in profiles.items():
142  evaluated[name] = profile.evaluate(radii)
143  basis = profile.getBasis(8)
144  evaluated["g" + name] = evaluateRadial(basis, radii, sbNormalize=True, doComponents=False)[0, :]
145  fluxes = {name: numpy.trapz(z*radii, radii) for name, z in evaluated.items()}
146  return fluxes
147 
148 
def integrateNormalizedFluxes(maxRadius=20.0, nSteps=5000)
Definition: tractor.py:116

◆ plotSuite()

def lsst.shapelet.tractor.plotSuite (   doComponents = False)
Plot all the profiles defined in this module together.

Plot all the profiles defined in this module together: true exp and dev,
the SDSS softened/truncated lux and luv, and the multi-Gaussian approximations
to all of these.

Parameters
----------
doComponents : `bool`, optional
    True, to plot the individual Gaussians that form the multi-Gaussian approximations.

Returns
-------
figure : `matplotlib.figure.Figure`
    Figure that contains the plot.
axes : `numpy.ndarray` of `matplotlib.axes.Axes`
    A 2x4 NumPy array of matplotlib axes objects.

Definition at line 149 of file tractor.py.

149 def plotSuite(doComponents=False):
150  """Plot all the profiles defined in this module together.
151 
152  Plot all the profiles defined in this module together: true exp and dev,
153  the SDSS softened/truncated lux and luv, and the multi-Gaussian approximations
154  to all of these.
155 
156  Parameters
157  ----------
158  doComponents : `bool`, optional
159  True, to plot the individual Gaussians that form the multi-Gaussian approximations.
160 
161  Returns
162  -------
163  figure : `matplotlib.figure.Figure`
164  Figure that contains the plot.
165  axes : `numpy.ndarray` of `matplotlib.axes.Axes`
166  A 2x4 NumPy array of matplotlib axes objects.
167  """
168  from matplotlib import pyplot
169  fig = pyplot.figure(figsize=(9, 4.7))
170  axes = numpy.zeros((2, 4), dtype=object)
171  r1 = numpy.logspace(-3, 0, 1000, base=10)
172  r2 = numpy.linspace(1, 10, 1000)
173  r = [r1, r2]
174  for i in range(2):
175  for j in range(4):
176  axes[i, j] = fig.add_subplot(2, 4, i*4+j+1)
177  profiles = {name: RadialProfile.get(name) for name in ("exp", "lux", "dev", "luv")}
178  basis = {name: profiles[name].getBasis(8) for name in profiles}
179  z = numpy.zeros((2, 4), dtype=object)
180  colors = ("k", "g", "b", "r")
181  fig.subplots_adjust(wspace=0.025, hspace=0.025, bottom=0.15, left=0.1, right=0.98, top=0.92)
182  centers = [None, None]
183  for i in range(2): # 0=profile, 1=relative error
184  for j in range(0, 4, 2): # grid columns: 0=exp-like, 2=dev-like
185  bbox0 = axes[i, j].get_position()
186  bbox1 = axes[i, j+1].get_position()
187  bbox1.x0 = bbox0.x1 - 0.06
188  bbox0.x1 = bbox1.x0
189  centers[j//2] = 0.5*(bbox0.x0 + bbox1.x1)
190  axes[i, j].set_position(bbox0)
191  axes[i, j+1].set_position(bbox1)
192  for j in range(0, 2):
193  z[0, j] = [evaluateRadial(basis[k], r[j], sbNormalize=True, doComponents=doComponents)
194  for k in ("exp", "lux")]
195  z[0, j][0:0] = [profiles[k].evaluate(r[j])[numpy.newaxis, :] for k in ("exp", "lux")]
196  z[0, j+2] = [evaluateRadial(basis[k], r[j], sbNormalize=True, doComponents=doComponents)
197  for k in ("dev", "luv")]
198  z[0, j+2][0:0] = [profiles[k].evaluate(r[j])[numpy.newaxis, :] for k in ("dev", "luv")]
199  methodNames = [["loglog", "semilogy"], ["semilogx", "plot"]]
200  for j in range(0, 4): # grid columns
201  z[1, j] = [(z[0, j][0][0, :] - z[0, j][i][0, :])/z[0, j][0][0, :] for i in range(0, 4)]
202  handles = []
203  method0 = getattr(axes[0, j], methodNames[0][j%2])
204  method1 = getattr(axes[1, j], methodNames[1][j%2])
205  for k in range(4):
206  y0 = z[0, j][k]
207  handles.append(method0(r[j%2], y0[0, :], color=colors[k])[0])
208  if doComponents:
209  for ll in range(1, y0.shape[0]):
210  method0(r[j%2], y0[ll, :], color=colors[k], alpha=0.25)
211  method1(r[j%2], z[1, j][k], color=colors[k])
212  axes[0, j].set_xticklabels([])
213  axes[0, j].set_ylim(1E-6, 1E3)
214  axes[1, j].set_ylim(-0.2, 1.0)
215  for i, label in enumerate(("profile", "relative error")):
216  axes[i, 0].set_ylabel(label)
217  for t in axes[i, 0].get_yticklabels():
218  t.set_fontsize(11)
219  for j in range(1, 4):
220  axes[0, j].set_yticklabels([])
221  axes[1, j].set_yticklabels([])
222  xticks = [['$\\mathdefault{10^{%d}}$' % i for i in range(-3, 1)],
223  [str(i) for i in range(1, 11)]]
224  xticks[0][-1] = ""
225  xticks[1][-1] = ""
226  for j in range(0, 4):
227  axes[1, j].set_xticklabels(xticks[j%2])
228  for t in axes[1, j].get_xticklabels():
229  t.set_fontsize(11)
230  fig.legend(handles, ["exp/dev", "lux/luv", "approx exp/dev", "approx lux/luv"],
231  loc='lower center', ncol=4)
232  fig.text(centers[0], 0.95, "exponential", ha='center', weight='bold')
233  fig.text(centers[1], 0.95, "de Vaucouleur", ha='center', weight='bold')
234  return fig, axes
def plotSuite(doComponents=False)
Definition: tractor.py:149

◆ registerRadialProfiles()

def lsst.shapelet.tractor.registerRadialProfiles ( )
Register the pickled profiles in the data directory with the RadialProfile
singleton registry.

This should only be called at import time by this module; it's only a function to
avoid polluting the module namespace with all the local variables used here.

Definition at line 41 of file tractor.py.

42  """Register the pickled profiles in the data directory with the RadialProfile
43  singleton registry.
44 
45  This should only be called at import time by this module; it's only a function to
46  avoid polluting the module namespace with all the local variables used here.
47  """
48  dataDir = os.path.join(os.environ["SHAPELET_DIR"], "data")
49  regex = re.compile(r"([a-z]+\d?)_K(\d+)_MR(\d+)\.pickle")
50  for filename in os.listdir(dataDir):
51  match = regex.match(filename)
52  if not match:
53  continue
54  name = match.group(1)
55  nComponents = int(match.group(2))
56  maxRadius = int(match.group(3))
57  try:
58  profile = RadialProfile.get(name)
60  warnings.warn("No C++ profile for multi-Gaussian pickle file '%s'" % filename)
61  continue
62  with open(os.path.join(dataDir, filename), 'rb') as stream:
63  if sys.version_info[0] >= 3:
64  array = pickle.load(stream, encoding='latin1')
65  else:
66  array = pickle.load(stream)
67  amplitudes = array[:nComponents]
68  amplitudes /= amplitudes.sum()
69  variances = array[nComponents:]
70  if amplitudes.shape != (nComponents,) or variances.shape != (nComponents,):
71  warnings.warn("Unknown format for multi-Gaussian pickle file '%s'" % filename)
72  continue
73  basis = MultiShapeletBasis(1)
74  for amplitude, variance in zip(amplitudes, variances):
75  radius = variance**0.5
76  matrix = numpy.array([[amplitude / ShapeletFunction.FLUX_FACTOR]], dtype=float)
77  basis.addComponent(radius, 0, matrix)
78  profile.registerBasis(basis, nComponents, maxRadius)
79 
80 
81 # We register all the profiles at module import time, to allow C++ code to access all available profiles
82 # without having to later call Python code to unpickle them.
84 
85 
Provides consistent interface for LSST exceptions.
Definition: Exception.h:107
def registerRadialProfiles()
Definition: tractor.py:41