32 """!Configuration for propagating flags to coadd"""
34 default={
"calib_psf_candidate": 0.2,
"calib_psf_used": 0.2,
"calib_psf_reserved": 0.2,
35 "calib_astrometry_used": 0.2,
"calib_photometry_used": 0.2,
36 "calib_photometry_reserved": 0.2, },
37 doc=(
"Source catalog flags to propagate, with the threshold of relative occurrence "
38 "(valid range: [0-1], default is 0.2). Coadd object will have flag set if the "
39 "fraction of input visits in which it is flagged is greater than the threshold."))
40 matchRadius =
Field(dtype=float, default=0.2, doc=
"Source matching radius (arcsec)")
41 ccdName =
Field(dtype=str, default=
'ccd', doc=
"Name of ccd to give to butler")
52 r"""!Task to propagate flags from single-frame measurements to coadd measurements
54 \anchor PropagateVisitFlagsTask_
56 \brief Propagate flags from individual visit measurements to coadd measurements
58 \section pipe_tasks_propagateVisitFlagsTask_Contents Contents
60 - \ref pipe_tasks_propagateVisitFlagsTask_Description
61 - \ref pipe_tasks_propagateVisitFlagsTask_Initialization
62 - \ref pipe_tasks_propagateVisitFlagsTask_Config
63 - \ref pipe_tasks_propagateVisitFlagsTask_Use
64 - \ref pipe_tasks_propagateVisitFlagsTask_Example
66 \section pipe_tasks_propagateVisitFlagsTask_Description Description
68 \copybrief PropagateVisitFlagsTask
70 We want to be able to set a flag for sources on the coadds using flags
71 that were determined from the individual visits. A common example is sources
72 that were used for PSF determination, since we do not do any PSF determination
73 on the coadd but use the individual visits. This requires matching the coadd
74 source catalog to each of the catalogs from the inputs (see
75 PropagateVisitFlagsConfig.matchRadius), and thresholding on the number of
76 times a source is flagged on the input catalog.
78 An important consideration in this is that the flagging of sources in the
79 individual visits can be somewhat stochastic, e.g., the same stars may not
80 always be used for PSF determination because the field of view moves slightly
81 between visits, or the seeing changed. We there threshold on the relative
82 occurrence of the flag in the visits (see PropagateVisitFlagsConfig.flags).
83 Flagging a source that is always flagged in inputs corresponds to a threshold
84 of 1, while flagging a source that is flagged in any of the input corresponds
85 to a threshold of 0. But neither of these extrema are really useful in
88 Setting the threshold too high means that sources that are not consistently
89 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
90 that threshold too low means that random sources which are falsely flagged in
91 the inputs will start to dominate. If in doubt, we suggest making this
92 threshold relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more
93 confidence in the quality of the flagging, the lower the threshold can be.
95 The relative occurrence accounts for the edge of the field-of-view of the
96 camera, but does not include chip gaps, bad or saturated pixels, etc.
98 \section pipe_tasks_propagateVisitFlagsTask_Initialization Initialization
100 Beyond the usual Task initialization, PropagateVisitFlagsTask also requires
101 a schema for the catalog that is being constructed.
103 \section pipe_tasks_propagateVisitFlagsTask_Config Configuration parameters
105 See \ref PropagateVisitFlagsConfig
107 \section pipe_tasks_propagateVisitFlagsTask_Use Use
109 The 'run' method (described below) is the entry-point for operations. The
110 'getCcdInputs' staticmethod is provided as a convenience for retrieving the
111 'ccdInputs' (CCD inputs table) from an Exposure.
115 \section pipe_tasks_propagateVisitFlagsTask_Example Example
119 # * butler: data butler, for retrieving the CCD catalogs
120 # * coaddCatalog: catalog of source measurements on the coadd (lsst.afw.table.SourceCatalog)
121 # * coaddExposure: coadd (lsst.afw.image.Exposure)
122 from lsst.pipe.tasks.propagateVisitFlags import PropagateVisitFlagsTask, PropagateVisitFlagsConfig
123 config = PropagateVisitFlagsConfig()
124 config.flags["calib_psf_used"] = 0.3 # Relative threshold for this flag
125 config.matchRadius = 0.5 # Matching radius in arcsec
126 task = PropagateVisitFlagsTask(coaddCatalog.schema, config=config)
127 ccdInputs = task.getCcdInputs(coaddExposure)
128 task.run(butler, coaddCatalog, ccdInputs, coaddExposure.getWcs())
131 ConfigClass = PropagateVisitFlagsConfig
134 Task.__init__(self, **kwargs)
136 self.
_keys_keys = dict((f, self.
schemaschema.addField(f, type=
"Flag", doc=
"Propagated from visits"))
for
137 f
in self.config.flags)
141 """!Convenience method to retrieve the CCD inputs table from a coadd exposure"""
142 return coaddExposure.getInfo().getCoaddInputs().ccds
144 def run(self, butler, coaddSources, ccdInputs, coaddWcs, visitCatalogs=None, wcsUpdates=None):
145 """!Propagate flags from individual visit measurements to coadd
147 This requires matching the coadd source catalog to each of the catalogs
148 from the inputs, and thresholding on the number of times a source is
149 flagged on the input catalog. The threshold is made on the relative
150 occurrence of the flag in each source. Flagging a source that is always
151 flagged in inputs corresponds to a threshold of 1, while flagging a
152 source that is flagged in any of the input corresponds to a threshold of
153 0. But neither of these extrema are really useful in practise.
155 Setting the threshold too high means that sources that are not consistently
156 flagged (e.g., due to chip gaps) will not have the flag propagated. Setting
157 that threshold too low means that random sources which are falsely flagged in
158 the inputs will start to dominate. If in doubt, we suggest making this threshold
159 relatively low, but not zero (e.g., 0.1 to 0.2 or so). The more confidence in
160 the quality of the flagging, the lower the threshold can be.
162 The relative occurrence accounts for the edge of the field-of-view of
163 the camera, but does not include chip gaps, bad or saturated pixels, etc.
165 @param[in] butler Data butler, for retrieving the input source catalogs
166 @param[in,out] coaddSources Source catalog from the coadd
167 @param[in] ccdInputs Table of CCDs that contribute to the coadd
168 @param[in] coaddWcs Wcs for coadd
169 @param[in] visitCatalogs List of loaded source catalogs for each input ccd in
170 the coadd. If provided this is used instead of this
171 method loading in the catalogs itself
172 @param[in] wcsUpdates optional, If visitCatalogs is a list of ccd catalogs, this
173 should be a list of updated wcs to apply
175 if len(self.config.flags) == 0:
179 counts = dict((f, numpy.zeros(len(coaddSources), dtype=int))
for f
in flags)
180 indices = numpy.array([s.getId()
for s
in coaddSources])
181 radius = self.config.matchRadius*geom.arcseconds
183 def processCcd(ccdSources, wcsUpdate):
184 for sourceRecord
in ccdSources:
185 sourceRecord.updateCoord(wcsUpdate)
192 mc.findOnlyClosest =
False
195 index = (numpy.where(indices == m.first.getId()))[0][0]
196 counts[flag][index] += 1
198 if visitCatalogs
is not None:
199 if wcsUpdates
is None:
200 raise pexExceptions.ValueError(
"If ccdInputs is a list of src catalogs, a list of wcs"
201 " updates for each catalog must be supplied in the "
202 "wcsUpdates parameter")
203 for i, ccdSource
in enumerate(visitCatalogs):
204 processCcd(ccdSource, wcsUpdates[i])
206 if ccdInputs
is None:
207 raise pexExceptions.ValueError(
"The visitCatalogs and ccdInput parameters can't both be None")
208 visitKey = ccdInputs.schema.find(
"visit").key
209 ccdKey = ccdInputs.schema.find(
"ccd").key
211 self.log.
info(
"Propagating flags %s from inputs", flags)
214 for ccdRecord
in ccdInputs:
215 v = ccdRecord.get(visitKey)
216 c = ccdRecord.get(ccdKey)
217 dataId = {
"visit": int(v), self.config.ccdName: int(c)}
218 ccdSources = butler.get(
"src", dataId=dataId, immediate=
True)
219 processCcd(ccdSources, ccdRecord.getWcs())
223 key = self.
_keys_keys[f]
224 for s, num
in zip(coaddSources, counts[f]):
225 numOverlaps = len(ccdInputs.subsetContaining(s.getCentroid(), coaddWcs,
True))
226 s.setFlag(key, bool(num > numOverlaps*self.config.flags[f]))
227 self.log.
info(
"Propagated %d sources with flag %s", sum(s.get(key)
for s
in coaddSources), f)
Pass parameters to algorithms that match list of sources.
Configuration for propagating flags to coadd.
Task to propagate flags from single-frame measurements to coadd measurements.
def run(self, butler, coaddSources, ccdInputs, coaddWcs, visitCatalogs=None, wcsUpdates=None)
Propagate flags from individual visit measurements to coadd.
def getCcdInputs(coaddExposure)
Convenience method to retrieve the CCD inputs table from a coadd exposure.
def __init__(self, schema, **kwargs)
std::vector< Match< typename Cat1::Record, typename Cat2::Record > > matchRaDec(Cat1 const &cat1, Cat2 const &cat2, lsst::geom::Angle radius, MatchControl const &mc=MatchControl())
Compute all tuples (s1,s2,d) where s1 belings to cat1, s2 belongs to cat2 and d, the distance between...