LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
_baseColumnView.py
Go to the documentation of this file.
1# This file is part of afw.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22__all__ = [] # importing this module adds methods to BaseColumnView
23
24import numpy as np
25
26from lsst.utils import continueClass
27from ._table import KeyFlag, _BaseColumnViewBase
28
29# We can't call this "BaseColumnView" because that's the typedef for
30# "ColumnViewT<BaseRecord>". This is just a mostly-invisible implementation
31# base class, so we use the same naming convention we use for those.
32
33
34@continueClass
35class _BaseColumnViewBase: # noqa: F811
36
37 def getBits(self, keys=None):
38 """Get the bits associated with the specified keys.
39
40 Parameters
41 ----------
42 key : `str`
43 Key to retrieve. Unlike the C++ version, each key may be a
44 field name or a key, and if keys is `None` then all bits
45 are returned.
46
47 Returns
48 -------
49 bits : `int`
50 Integer array of the requested bitmask.
51 """
52 if keys is None:
53 return self.getAllBits()
54 arg = []
55 for k in keys:
56 if isinstance(k, str):
57 arg.append(self.schema.find(k).key)
58 else:
59 arg.append(k)
60 return self._getBits(arg)
61
62 def __getitem__(self, key):
63 """Get a column view; key may be a key object or the name of a field.
64 """
65 if isinstance(key, str):
66 keyobj = self.schema.find(key).key
67 else:
68 keyobj = key
69 return self._basicget(keyobj)
70
71 get = __getitem__
72
73 def __setitem__(self, key, value):
74 """Set a full column to an array or scalar; key may be a key object or
75 the name of a field.
76 """
77 self.getget(key)[:] = value
78
79 set = __setitem__
80
81 def get_bool_array(self, key):
82 """Get the value of a flag column as a boolean array; key must be a
83 key object or the name of a field.
84
85 Parameters
86 ----------
87 key : `lsst.afw.table.KeyFlag`
88 Flag column to search for.
89
90 Returns
91 -------
92 value : `list` of `bool`
93 Array of booleans corresponding to the flag.
94
95 Raises
96 ------
97 TypeError
98 Raised if the key is not a KeyFlag.
99 """
100 if isinstance(key, KeyFlag):
101 return self[key]
102 raise TypeError("key={} not an lsst.afw.table.KeyFlag".format(key))
103
104 def extract(self, *patterns, **kwds):
105 """Extract a dictionary of {<name>: <column-array>} in which the field
106 names match the given shell-style glob pattern(s).
107
108 Any number of glob patterns may be passed (including none); the result
109 will be the union of all the result of each glob considered
110 separately.
111
112 Note that extract("*", copy=True) provides an easy way to transform a
113 row-major ColumnView into a possibly more efficient set of contiguous
114 NumPy arrays.
115
116 This routines unpacks `Flag` columns into full boolean arrays and
117 covariances into dense (i.e. non-triangular packed) arrays with
118 dimension (N,M,M), where N is the number of records and M is the
119 dimension of the covariance matrix. String fields are silently
120 ignored.
121
122 Parameters
123 ----------
124 patterns : Array of `str`
125 List of glob patterns to use to select field names.
126 kwds : `dict`
127 Dictionary of additional keyword arguments. May contain:
128
129 ``items`` : `list`
130 The result of a call to self.schema.extract(); this
131 will be used instead of doing any new matching, and
132 allows the pattern matching to be reused to extract
133 values from multiple records. This keyword is
134 incompatible with any position arguments and the
135 regex, sub, and ordered keyword arguments.
136 ``where`` : array index expression
137 Any expression that can be passed as indices to a
138 NumPy array, including slices, boolean arrays, and
139 index arrays, that will be used to index each column
140 array. This is applied before arrays are copied when
141 copy is True, so if the indexing results in an
142 implicit copy no unnecessary second copy is performed.
143 ``copy`` : `bool`
144 If True, the returned arrays will be contiguous copies
145 rather than strided views into the catalog. This
146 ensures that the lifetime of the catalog is not tied
147 to the lifetime of a particular catalog, and it also
148 may improve the performance if the array is used
149 repeatedly. Default is False.
150 ``regex`` : `str` or `re` pattern
151 A regular expression to be used in addition to any
152 glob patterns passed as positional arguments. Note
153 that this will be compared with re.match, not
154 re.search.
155 ``sub`` : `str`
156 A replacement string (see re.MatchObject.expand) used
157 to set the dictionary keys of any fields matched by
158 regex.
159 ``ordered`` : `bool`
160 If True, a collections.OrderedDict will be returned
161 instead of a standard dict, with the order
162 corresponding to the definition order of the
163 Schema. Default is False.
164
165 Returns
166 -------
167 d : `dict`
168 Dictionary of extracted name-column array sets.
169
170 Raises
171 ------
172 ValueError
173 Raised if a list of ``items`` is supplied with additional
174 keywords.
175 """
176 copy = kwds.pop("copy", False)
177 where = kwds.pop("where", None)
178 d = kwds.pop("items", None)
179 # If ``items`` is given as a kwd, an extraction has already been performed and there shouldn't be
180 # any additional keywords. Otherwise call schema.extract to load the
181 # dictionary.
182 if d is None:
183 d = self.schema.extract(*patterns, **kwds).copy()
184 elif kwds:
185 raise ValueError(
186 "kwd 'items' was specified, which is not compatible with additional keywords")
187
188 def processArray(a):
189 if where is not None:
190 a = a[where]
191 if copy:
192 a = np.ascontiguousarray(a)
193 return a
194
195 # must use list because we might be adding/deleting elements
196 for name, schemaItem in list(d.items()):
197 key = schemaItem.key
198 if key.getTypeString() == "String":
199 del d[name]
200 else:
201 d[name] = processArray(self.getget(schemaItem.key))
202 return d
daf::base::PropertyList * list
Definition: fits.cc:913
def format(config, name=None, writeSourceLine=True, prefix="", verbose=False)
Definition: history.py:174