LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
_leastSquares.cc
Go to the documentation of this file.
1/*
2 * LSST Data Management System
3 * Copyright 2008-2016 AURA/LSST.
4 *
5 * This product includes software developed by the
6 * LSST Project (http://www.lsst.org/).
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the LSST License Statement and
19 * the GNU General Public License along with this program. If not,
20 * see <https://www.lsstcorp.org/LegalNotices/>.
21 */
22
23#include <pybind11/pybind11.h>
24#include <lsst/utils/python.h>
25
26#include "ndarray/pybind11.h"
27
29
30namespace py = pybind11;
31using namespace pybind11::literals;
32
33using namespace lsst::afw::math;
34namespace lsst {
35namespace afw {
36namespace math {
37namespace {
38template <typename T1, typename T2, int C1, int C2>
39void declareLeastSquares(lsst::utils::python::WrapperCollection &wrappers) {
40 auto clsLeastSquares = wrappers.wrapType(
41 py::class_<LeastSquares>(wrappers.module, "LeastSquares"), [](auto &mod, auto &cls) {
42 cls.def_static(
43 "fromDesignMatrix",
44 (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
45 LeastSquares::Factorization)) &
46 LeastSquares::fromDesignMatrix<T1, T2, C1, C2>,
47 "design"_a, "data"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
48 cls.def_static(
49 "fromNormalEquations",
50 (LeastSquares(*)(ndarray::Array<T1, 2, C1> const &, ndarray::Array<T2, 1, C2> const &,
51 LeastSquares::Factorization)) &
52 LeastSquares::fromNormalEquations<T1, T2, C1, C2>,
53 "fisher"_a, "rhs"_a, "factorization"_a = LeastSquares::NORMAL_EIGENSYSTEM);
54 cls.def("getRank", &LeastSquares::getRank);
55 cls.def("setDesignMatrix", (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &,
56 ndarray::Array<T2, 1, C2> const &)) &
57 LeastSquares::setDesignMatrix<T1, T2, C1, C2>);
58 cls.def("getDimension", &LeastSquares::getDimension);
59 cls.def("setNormalEquations", (void (LeastSquares::*)(ndarray::Array<T1, 2, C1> const &,
60 ndarray::Array<T2, 1, C2> const &)) &
61 LeastSquares::setNormalEquations<T1, T2, C1, C2>);
62 cls.def("getSolution", &LeastSquares::getSolution);
63 cls.def("getFisherMatrix", &LeastSquares::getFisherMatrix);
64 cls.def("getCovariance", &LeastSquares::getCovariance);
65 cls.def("getFactorization", &LeastSquares::getFactorization);
66 cls.def("getDiagnostic", &LeastSquares::getDiagnostic);
67 cls.def("getThreshold", &LeastSquares::getThreshold);
68 cls.def("setThreshold", &LeastSquares::setThreshold);
69 });
70 wrappers.wrapType(py::enum_<LeastSquares::Factorization>(clsLeastSquares, "Factorization"),
71 [](auto &mod, auto &enm) {
72 enm.value("NORMAL_EIGENSYSTEM", LeastSquares::Factorization::NORMAL_EIGENSYSTEM);
73 enm.value("NORMAL_CHOLESKY", LeastSquares::Factorization::NORMAL_CHOLESKY);
74 enm.value("DIRECT_SVD", LeastSquares::Factorization::DIRECT_SVD);
75 enm.export_values();
76 });
77};
78} // namespace
79
80void wrapLeastSquares(lsst::utils::python::WrapperCollection &wrappers) {
81 declareLeastSquares<double, double, 0, 0>(wrappers);
82}
83} // namespace math
84} // namespace afw
85} // namespace lsst
void wrapLeastSquares(lsst::utils::python::WrapperCollection &wrappers)
A base class for image defects.