LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
FitterBase.cc
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2/*
3 * This file is part of jointcal.
4 *
5 * Developed for the LSST Data Management System.
6 * This product includes software developed by the LSST Project
7 * (https://www.lsst.org).
8 * See the COPYRIGHT file at the top-level directory of this distribution
9 * for details of code ownership.
10 *
11 * This program is free software: you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation, either version 3 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program. If not, see <https://www.gnu.org/licenses/>.
23 */
24
25#include <vector>
26#include "Eigen/Core"
27
28#include <boost/math/tools/minima.hpp>
29
30#include "lsst/log/Log.h"
31
32#include "lsst/jointcal/Chi2.h"
38
39namespace lsst {
40namespace jointcal {
41
43 Chi2Statistic chi2;
44 accumulateStatImageList(_associations->getCcdImageList(), chi2);
46 // chi2.ndof contains the number of squares.
47 // So subtract the number of parameters.
48 chi2.ndof -= _nTotal;
49 return chi2;
50}
51
53 FittedStarList &fsOutliers, double &cut) const {
54 // collect chi2 contributions
55 Chi2List chi2List;
56 chi2List.reserve(_associations->getMaxMeasuredStars() + _associations->refStarList.size());
57 // contributions from measurement terms:
58 accumulateStatImageList(_associations->ccdImageList, chi2List);
59 // and from reference terms
60 accumulateStatRefStars(chi2List);
61
62 // compute some statistics
63 size_t nval = chi2List.size();
64 if (nval == 0) return 0;
65 sort(chi2List.begin(), chi2List.end());
66 double median = (nval & 1) ? chi2List[nval / 2].chi2
67 : 0.5 * (chi2List[nval / 2 - 1].chi2 + chi2List[nval / 2].chi2);
68 auto averageAndSigma = chi2List.computeAverageAndSigma();
69 LOGLS_DEBUG(_log, "findOutliers chi2 stat: mean/median/sigma " << averageAndSigma.first << '/' << median
70 << '/' << averageAndSigma.second);
71 cut = averageAndSigma.first + nSigmaCut * averageAndSigma.second;
72 /* For each of the parameters, we will not remove more than 1
73 measurement that contributes to constraining it. Keep track using
74 of what we are touching using an integer vector. This is the
75 trick that Marc Betoule came up to for outlier removals in "star
76 flats" fits. */
77 Eigen::VectorXi affectedParams(_nTotal);
78 affectedParams.setZero();
79
80 std::size_t nOutliers = 0; // returned to the caller
81 // start from the strongest outliers.
82 for (auto chi2 = chi2List.rbegin(); chi2 != chi2List.rend(); ++chi2) {
83 if (chi2->chi2 < cut) break; // because the array is sorted.
84 IndexVector indices;
85 /* now, we want to get the indices of the parameters this chi2
86 term depends on. We have to figure out which kind of term it
87 is; we use for that the type of the star attached to the Chi2Star. */
88 auto measuredStar = std::dynamic_pointer_cast<MeasuredStar>(chi2->star);
89 std::shared_ptr<FittedStar> fittedStar; // To add to fsOutliers if it is a reference outlier.
90 if (measuredStar == nullptr) {
91 // it is a reference outlier
92 fittedStar = std::dynamic_pointer_cast<FittedStar>(chi2->star);
93 if (fittedStar->getMeasurementCount() == 0) {
94 LOGLS_WARN(_log, "FittedStar with no measuredStars found as an outlier: "
95 << *fittedStar << " chi2: " << chi2->chi2);
96 continue;
97 }
98 if (_nStarParams == 0) {
100 "RefStar is outlier but not removed when not fitting FittedStar-RefStar values: "
101 << *(fittedStar->getRefStar()) << " chi2: " << chi2->chi2);
102 continue;
103 }
104 // NOTE: Stars contribute twice to astrometry (x,y), but once to photometry (flux),
105 // NOTE: but we only need to mark one index here because both will be removed with that star.
106 indices.push_back(fittedStar->getIndexInMatrix());
107 LOGLS_TRACE(_log, "Removing refStar " << *(fittedStar->getRefStar()) << " chi2: " << chi2->chi2);
108 /* One might think it would be useful to account for PM
109 parameters here, but it is just useless */
110 } else {
111 // it is a measurement outlier
112 auto tempFittedStar = measuredStar->getFittedStar();
113 if (tempFittedStar->getMeasurementCount() == 1 && tempFittedStar->getRefStar() == nullptr) {
114 LOGLS_WARN(_log, "FittedStar with 1 measuredStar and no refStar found as an outlier: "
115 << *tempFittedStar);
116 continue;
117 }
118 getIndicesOfMeasuredStar(*measuredStar, indices);
119 LOGLS_TRACE(_log, "Removing measStar " << *measuredStar << " chi2: " << chi2->chi2);
120 }
121
122 /* Find out if we already discarded a stronger outlier
123 constraining some parameter this one constrains as well. If
124 yes, we keep this one, because this stronger outlier could be
125 causing the large chi2 we have in hand. */
126 bool drop_it = true;
127 for (auto const &i : indices) {
128 if (affectedParams(i) != 0) {
129 drop_it = false;
130 }
131 }
132
133 if (drop_it) // store the outlier in one of the lists:
134 {
135 if (measuredStar == nullptr) {
136 // reference term
137 fsOutliers.push_back(fittedStar);
138 } else {
139 // measurement term
140 msOutliers.push_back(measuredStar);
141 }
142 // mark the parameters as directly changed when we discard this chi2 term.
143 for (auto const &i : indices) {
144 affectedParams(i)++;
145 }
146 nOutliers++;
147 }
148 } // end loop on measurements/references
149 LOGLS_DEBUG(_log, "findOutliers: found " << msOutliers.size() << " meas outliers and "
150 << fsOutliers.size() << " ref outliers ");
151
152 return nOutliers;
153}
154
155namespace {
157SparseMatrixD createHessian(std::size_t nParTot, TripletList const &tripletList) {
158 SparseMatrixD jacobian(nParTot, tripletList.getNextFreeIndex());
159 jacobian.setFromTriplets(tripletList.begin(), tripletList.end());
160 return jacobian * jacobian.transpose();
161}
162
164void dumpMatrixAndGradient(SparseMatrixD const &matrix, Eigen::VectorXd const &grad,
165 std::string const &dumpFile, LOG_LOGGER _log) {
166 std::string ext = ".txt";
167 Eigen::MatrixXd matrixDense(matrix);
168 std::string dumpMatrixPath = dumpFile + "-mat" + ext;
169 std::ofstream matfile(dumpMatrixPath);
170 matfile << matrixDense << std::endl;
171 std::string dumpGradPath = dumpFile + "-grad" + ext;
172 std::ofstream gradfile(dumpGradPath);
173 gradfile << grad << std::endl;
174 LOGLS_INFO(_log, "Dumped Hessian, gradient to: '" << dumpMatrixPath << "', '" << dumpGradPath << "'");
175}
176} // namespace
177
178MinimizeResult FitterBase::minimize(std::string const &whatToFit, double nSigmaCut,
179 double sigmaRelativeTolerance, bool doRankUpdate, bool const doLineSearch,
180 std::string const &dumpMatrixFile) {
181 assignIndices(whatToFit);
182
184
185 // For the initial vector size, use all measured stars + all fitted stars, which should give the
186 // maximum possible number of triplets.
187 std::size_t nTrip = (_lastNTrip)
188 ? _lastNTrip
189 : _associations->getMaxMeasuredStars() + _associations->fittedStarList.size();
190 TripletList tripletList(nTrip);
191 Eigen::VectorXd grad(_nTotal);
192 grad.setZero();
193 double scale = 1.0;
194
195 // Fill the triplets
196 leastSquareDerivatives(tripletList, grad);
197 _lastNTrip = tripletList.size();
198
199 LOGLS_DEBUG(_log, "End of triplet filling, ntrip = " << tripletList.size());
200
201 SparseMatrixD hessian = createHessian(_nTotal, tripletList);
202 tripletList.clear(); // we don't need it any more after we have the hessian.
203
204 LOGLS_DEBUG(_log, "Starting factorization, hessian: dim="
205 << hessian.rows() << " non-zeros=" << hessian.nonZeros()
206 << " filling-frac = " << hessian.nonZeros() / std::pow(hessian.rows(), 2));
207
208 if (dumpMatrixFile != "") {
209 if (hessian.rows() * hessian.cols() > 2e8) {
210 LOGLS_WARN(_log, "Hessian matrix is too big to dump to file, with rows, columns: "
211 << hessian.rows() << ", " << hessian.cols());
212 } else {
213 dumpMatrixAndGradient(hessian, grad, dumpMatrixFile, _log);
214 }
215 }
216
218 if (chol.info() != Eigen::Success) {
219 LOGLS_ERROR(_log, "minimize: factorization failed ");
221 }
222
223 std::size_t totalMeasOutliers = 0;
224 std::size_t totalRefOutliers = 0;
225 double oldChi2 = computeChi2().chi2;
226 double oldSigmaCut = 0.;
227 double sigmaCut = 0.;
228
229 while (true) {
230 Eigen::VectorXd delta = chol.solve(grad);
231 if (doLineSearch) {
232 scale = _lineSearch(delta);
233 }
234 offsetParams(scale * delta);
235 Chi2Statistic currentChi2(computeChi2());
236 LOGLS_DEBUG(_log, currentChi2);
237 if (!isfinite(currentChi2.chi2)) {
238 LOGL_ERROR(_log, "chi2 is not finite. Aborting outlier rejection.");
239 returnCode = MinimizeResult::NonFinite;
240 break;
241 }
242 if (currentChi2.chi2 > oldChi2 && totalMeasOutliers + totalRefOutliers != 0) {
243 LOGL_WARN(_log, "chi2 went up, skipping outlier rejection loop");
245 break;
246 }
247 oldChi2 = currentChi2.chi2;
248
249 if (nSigmaCut == 0) break; // no rejection step to perform
250 MeasuredStarList msOutliers;
251 FittedStarList fsOutliers;
252 // keep nOutliers so we don't have to sum msOutliers.size()+fsOutliers.size() twice below.
253 std::size_t nOutliers = findOutliers(nSigmaCut, msOutliers, fsOutliers, sigmaCut);
254 double relChange = 0.;
255 if(oldSigmaCut!=0.) relChange = (1 - sigmaCut / oldSigmaCut);
256
257 LOGLS_DEBUG(_log, "findOutliers chi2 cut level: " << sigmaCut << ", relative change: " << relChange);
258 // If sigmaRelativeTolerance is set and at least one iteration has been done, break loop when the
259 // fractional change in sigmaCut levels is less than the sigmaRelativeTolerance parameter.
260 if ((sigmaRelativeTolerance > 0) && (oldSigmaCut > 0 && relChange < sigmaRelativeTolerance)) {
261 LOGLS_INFO(_log, "Iterations stopped with chi2 cut at " << sigmaCut << " and relative change of "
262 << relChange);
263 break;
264 }
265 totalMeasOutliers += msOutliers.size();
266 totalRefOutliers += fsOutliers.size();
267 oldSigmaCut = sigmaCut;
268 if (nOutliers == 0) break;
269 TripletList outlierTriplets(nOutliers);
270 grad.setZero(); // recycle the gradient
271 // compute the contributions of outliers to derivatives
272 outliersContributions(msOutliers, fsOutliers, outlierTriplets, grad);
273 // Remove significant outliers
274 removeMeasOutliers(msOutliers);
275 removeRefOutliers(fsOutliers);
276 if (doRankUpdate) {
277 // convert triplet list to eigen internal format
278 SparseMatrixD H(_nTotal, outlierTriplets.getNextFreeIndex());
279 H.setFromTriplets(outlierTriplets.begin(), outlierTriplets.end());
280 chol.update(H, false /* means downdate */);
281 // The contribution of outliers to the gradient is the opposite
282 // of the contribution of all other terms, because they add up to 0
283 grad *= -1;
284 } else {
285 // don't reuse tripletList because we want a new nextFreeIndex.
286 TripletList nextTripletList(_lastNTrip);
287 grad.setZero();
288 // Rebuild the matrix and gradient
289 leastSquareDerivatives(nextTripletList, grad);
290 _lastNTrip = nextTripletList.size();
291 LOGLS_DEBUG(_log, "Triplets recomputed, ntrip = " << nextTripletList.size());
292
293 hessian = createHessian(_nTotal, nextTripletList);
294 nextTripletList.clear(); // we don't need it any more after we have the hessian.
295
297 "Restarting factorization, hessian: dim="
298 << hessian.rows() << " non-zeros=" << hessian.nonZeros()
299 << " filling-frac = " << hessian.nonZeros() / std::pow(hessian.rows(), 2));
300 chol.compute(hessian);
301 if (chol.info() != Eigen::Success) {
302 LOGLS_ERROR(_log, "minimize: factorization failed ");
304 }
305 }
306 }
307
308 if (totalMeasOutliers + totalRefOutliers > 0) {
309 _associations->cleanFittedStars();
310 }
311
312 // only print the outlier summary if outlier rejection was turned on.
313 if (nSigmaCut != 0) {
314 LOGLS_INFO(_log, "Number of outliers (Measured + Reference = Total): "
315 << totalMeasOutliers << " + " << totalRefOutliers << " = "
316 << totalMeasOutliers + totalRefOutliers);
317 }
318 return returnCode;
319}
320
322 TripletList &tripletList, Eigen::VectorXd &grad) {
323 for (auto &outlier : msOutliers) {
325 tmp.push_back(outlier);
326 const CcdImage &ccdImage = outlier->getCcdImage();
327 leastSquareDerivativesMeasurement(ccdImage, tripletList, grad, &tmp);
328 }
329 leastSquareDerivativesReference(fsOutliers, tripletList, grad);
330}
331
333 for (auto &measuredStar : outliers) {
334 auto fittedStar = measuredStar->getFittedStar();
335 measuredStar->setValid(false);
336 fittedStar->getMeasurementCount()--; // could be put in setValid
337 }
338}
339
341 for (auto &fittedStar : outliers) {
342 fittedStar->setRefStar(nullptr);
343 }
344}
345
346void FitterBase::leastSquareDerivatives(TripletList &tripletList, Eigen::VectorXd &grad) const {
347 auto ccdImageList = _associations->getCcdImageList();
348 for (auto const &ccdImage : ccdImageList) {
349 leastSquareDerivativesMeasurement(*ccdImage, tripletList, grad);
350 }
351 leastSquareDerivativesReference(_associations->fittedStarList, tripletList, grad);
352}
353
355 std::string replaceStr = "{type}";
356 auto pos = baseName.find(replaceStr);
357 std::string measFilename(baseName);
358 measFilename.replace(pos, replaceStr.size(), "-meas.csv");
359 std::string refFilename(baseName);
360 refFilename.replace(pos, replaceStr.size(), "-ref.csv");
361 saveChi2MeasContributions(measFilename);
362 saveChi2RefContributions(refFilename);
363}
364
365double FitterBase::_lineSearch(Eigen::VectorXd const &delta) {
366 auto func = [this, &delta](double scale) {
367 auto offset = scale * delta;
368 offsetParams(offset);
369 auto chi2 = computeChi2();
370 // reset the system to where it was before offsetting.
371 offsetParams(-offset);
372 return chi2.chi2;
373 };
374 // The maximum theoretical precision is half the number of bits in the mantissa (see boost docs).
376 auto result = boost::math::tools::brent_find_minima(func, -1.0, 2.0, bits);
377 LOGLS_DEBUG(_log, "Line search scale factor: " << result.first);
378 return result.first;
379}
380
381} // namespace jointcal
382} // namespace lsst
py::object result
Definition: _schema.cc:429
Eigen::SparseMatrix< double, 0, Eigen::Index > SparseMatrixD
Definition: Eigenstuff.h:35
LSST DM logging module built on log4cxx.
#define LOGLS_WARN(logger, message)
Log a warn-level message using an iostream-based interface.
Definition: Log.h:659
#define LOGL_WARN(logger, message...)
Log a warn-level message using a varargs/printf style interface.
Definition: Log.h:547
#define LOGLS_INFO(logger, message)
Log a info-level message using an iostream-based interface.
Definition: Log.h:639
#define LOG_LOGGER
Definition: Log.h:714
#define LOGLS_ERROR(logger, message)
Log a error-level message using an iostream-based interface.
Definition: Log.h:679
#define LOGL_ERROR(logger, message...)
Log a error-level message using a varargs/printf style interface.
Definition: Log.h:563
#define LOGLS_DEBUG(logger, message)
Log a debug-level message using an iostream-based interface.
Definition: Log.h:619
#define LOGLS_TRACE(logger, message)
Log a trace-level message using an iostream-based interface.
Definition: Log.h:599
T begin(T... args)
void update(SparseMatrixD const &H, bool UpOrDown)
Definition: Eigenstuff.h:68
Handler of an actual image from a single CCD.
Definition: CcdImage.h:64
Structure to accumulate the chi2 contributions per each star (to help find outliers).
Definition: Chi2.h:100
std::pair< double, double > computeAverageAndSigma()
Compute the average and std-deviation of these chisq values.
Definition: Chi2.cc:33
Simple structure to accumulate chi2 and ndof.
Definition: Chi2.h:52
A list of FittedStar s. Such a list is typically constructed by Associations.
Definition: FittedStar.h:116
void leastSquareDerivatives(TripletList &tripletList, Eigen::VectorXd &grad) const
Evaluates the chI^2 derivatives (Jacobian and gradient) for the current whatToFit setting.
Definition: FitterBase.cc:346
void removeRefOutliers(FittedStarList &outliers)
Remove refStar outliers from the fit. No Refit done.
Definition: FitterBase.cc:340
virtual void getIndicesOfMeasuredStar(MeasuredStar const &measuredStar, IndexVector &indices) const =0
Set the indices of a measured star from the full matrix, for outlier removal.
Chi2Statistic computeChi2() const
Returns the chi2 for the current state.
Definition: FitterBase.cc:42
virtual void saveChi2MeasContributions(std::string const &filename) const =0
Save a CSV file containing residuals of measurement terms.
virtual void leastSquareDerivativesReference(FittedStarList const &fittedStarList, TripletList &tripletList, Eigen::VectorXd &grad) const =0
Compute the derivatives of the reference terms.
MinimizeResult minimize(std::string const &whatToFit, double nSigmaCut=0, double sigmaRelativeTolerance=0, bool doRankUpdate=true, bool doLineSearch=false, std::string const &dumpMatrixFile="")
Does a 1 step minimization, assuming a linear model.
Definition: FitterBase.cc:178
virtual void saveChi2Contributions(std::string const &baseName) const
Save the full chi2 term per star that was used in the minimization, for debugging.
Definition: FitterBase.cc:354
virtual void assignIndices(std::string const &whatToFit)=0
Set parameters to fit and assign indices in the big matrix.
virtual void offsetParams(Eigen::VectorXd const &delta)=0
Offset the parameters by the requested quantities.
std::shared_ptr< Associations > _associations
Definition: FitterBase.h:165
virtual void accumulateStatRefStars(Chi2Accumulator &accum) const =0
Compute the chi2 (per star or total, depending on which Chi2Accumulator is used) for RefStars.
virtual void saveChi2RefContributions(std::string const &filename) const =0
Save a CSV file containing residuals of reference terms.
virtual void leastSquareDerivativesMeasurement(CcdImage const &ccdImage, TripletList &tripletList, Eigen::VectorXd &grad, MeasuredStarList const *measuredStarList=nullptr) const =0
Compute the derivatives of the measured stars and model for one CcdImage.
void outliersContributions(MeasuredStarList &msOutliers, FittedStarList &fsOutliers, TripletList &tripletList, Eigen::VectorXd &grad)
Contributions to derivatives from (presumably) outlier terms.
Definition: FitterBase.cc:321
std::size_t findOutliers(double nSigmaCut, MeasuredStarList &msOutliers, FittedStarList &fsOutliers, double &cut) const
Find Measurements and references contributing more than a cut, computed as.
Definition: FitterBase.cc:52
virtual void accumulateStatImageList(CcdImageList const &ccdImageList, Chi2Accumulator &accum) const =0
Compute the chi2 (per star or total, depending on which Chi2Accumulator is used) for measurements.
void removeMeasOutliers(MeasuredStarList &outliers)
Remove measuredStar outliers from the fit. No Refit done.
Definition: FitterBase.cc:332
A list of MeasuredStar. They are usually filled in Associations::createCcdImage.
Definition: MeasuredStar.h:151
Eigen::Index getNextFreeIndex() const
Definition: Tripletlist.h:47
T clear(T... args)
T end(T... args)
T endl(T... args)
T find(T... args)
T isfinite(T... args)
def scale(algorithm, min, max=None, frame=None)
Definition: ds9.py:108
MinimizeResult
Return value of minimize()
Definition: FitterBase.h:42
A base class for image defects.
T pow(T... args)
T push_back(T... args)
T rbegin(T... args)
T rend(T... args)
T replace(T... args)
T reserve(T... args)
T size(T... args)
T sort(T... args)