25#ifndef LSST_AFW_MATH_GAUSSIAN_PROCESS_H
26#define LSST_AFW_MATH_GAUSSIAN_PROCESS_H
31#include "ndarray/eigen.h"
114 double _before, _beginning;
115 double _eigenTime, _iterationTime, _searchTime, _varianceTime, _totalTime;
116 int _interpolationCount;
150 virtual T operator()(ndarray::Array<const T, 1, 1>
const &p1,
151 ndarray::Array<const T, 1, 1>
const &p2)
const;
176 T operator()(ndarray::Array<const T, 1, 1>
const &, ndarray::Array<const T, 1, 1>
const &)
const override;
209 T operator()(ndarray::Array<const T, 1, 1>
const &, ndarray::Array<const T, 1, 1>
const &)
const override;
212 double _sigma0, _sigma1;
245 void Initialize(ndarray::Array<T, 2, 2>
const &dt);
262 void findNeighbors(ndarray::Array<int, 1, 1> neighdex, ndarray::Array<double, 1, 1> dd,
263 ndarray::Array<const T, 1, 1>
const &v,
int n_nn)
const;
295 ndarray::Array<T, 1, 1>
getData(
int ipt)
const;
304 void addPoint(ndarray::Array<const T, 1, 1>
const &v);
328 void getTreeNode(ndarray::Array<int, 1, 1>
const &v,
int dex)
const;
331 ndarray::Array<int, 2, 2> _tree;
332 ndarray::Array<int, 1, 1> _inn;
333 ndarray::Array<T, 2, 2> _data;
335 enum { DIMENSION, LT, GEQ, PARENT };
350 int _npts, _dimensions, _room, _roomStep, _masterParent;
351 mutable int _neighborsFound, _neighborsWanted;
357 mutable ndarray::Array<double, 1, 1> _neighborDistances;
358 mutable ndarray::Array<int, 1, 1> _neighborCandidates;
372 void _organize(ndarray::Array<int, 1, 1>
const &use,
int ct,
int parent,
int dir);
379 int _findNode(ndarray::Array<const T, 1, 1>
const &v)
const;
397 void _lookForNeighbors(ndarray::Array<const T, 1, 1>
const &v,
int consider,
int from)
const;
402 int _testTree()
const;
417 int _walkUpTree(
int target,
int dir,
int root)
const;
427 void _count(
int where,
int *ct)
const;
434 void _descend(
int root);
441 void _reassign(
int target);
446 double _distance(ndarray::Array<const T, 1, 1>
const &p1, ndarray::Array<const T, 1, 1>
const &p2)
const;
493 GaussianProcess(ndarray::Array<T, 2, 2>
const &dataIn, ndarray::Array<T, 1, 1>
const &ff,
515 GaussianProcess(ndarray::Array<T, 2, 2>
const &dataIn, ndarray::Array<T, 1, 1>
const &mn,
516 ndarray::Array<T, 1, 1>
const &mx, ndarray::Array<T, 1, 1>
const &ff,
530 GaussianProcess(ndarray::Array<T, 2, 2>
const &dataIn, ndarray::Array<T, 2, 2>
const &ff,
548 GaussianProcess(ndarray::Array<T, 2, 2>
const &dataIn, ndarray::Array<T, 1, 1>
const &mn,
549 ndarray::Array<T, 1, 1>
const &mx, ndarray::Array<T, 2, 2>
const &ff,
572 void getData(ndarray::Array<T, 2, 2> pts, ndarray::Array<T, 1, 1> fn,
573 ndarray::Array<int, 1, 1> indices)
const;
584 void getData(ndarray::Array<T, 2, 2> pts, ndarray::Array<T, 2, 2> fn,
585 ndarray::Array<int, 1, 1> indices)
const;
605 int numberOfNeighbors)
const;
622 ndarray::Array<T, 1, 1>
const &vin,
int numberOfNeighbors)
const;
660 int numberOfNeighbors)
const;
684 ndarray::Array<T, 2, 2>
const &queries)
const;
703 void batchInterpolate(ndarray::Array<T, 1, 1> mu, ndarray::Array<T, 2, 2>
const &queries)
const;
710 ndarray::Array<T, 2, 2>
const &queries)
const;
716 void batchInterpolate(ndarray::Array<T, 2, 2> mu, ndarray::Array<T, 2, 2>
const &queries)
const;
734 void addPoint(ndarray::Array<T, 1, 1>
const &vin,
T f);
745 void addPoint(ndarray::Array<T, 1, 1>
const &vin, ndarray::Array<T, 1, 1>
const &f);
806 int _npts, _useMaxMin, _dimensions, _room, _roomStep, _nFunctions;
808 T _krigingParameter, _lambda;
810 ndarray::Array<T, 1, 1> _max, _min;
811 ndarray::Array<T, 2, 2> _function;
Key< Flag > const & target
Interface for DateTime class.
table::Key< double > sigma1
The parent class of covariogram functions for use in Gaussian Process interpolation.
Covariogram()
construct a Covariogram assigning default values to the hyper parameters
Covariogram & operator=(Covariogram &&)=delete
Covariogram(const Covariogram &)=delete
Covariogram & operator=(const Covariogram &)=delete
virtual T operator()(ndarray::Array< const T, 1, 1 > const &p1, ndarray::Array< const T, 1, 1 > const &p2) const
Actually evaluate the covariogram function relating two points you want to interpolate from.
Covariogram(Covariogram &&)=delete
Stores values of a function sampled on an image and allows you to interpolate the function to unsampl...
GaussianProcessTimer & getTimes() const
Give the user acces to _timer, an object keeping track of the time spent on various processes within ...
void setLambda(T lambda)
set the value of the hyperparameter _lambda
int getDim() const
return the dimensionality of data points stored in the GaussianProcess
GaussianProcess & operator=(GaussianProcess &&)=delete
void setKrigingParameter(T kk)
Assign a value to the Kriging paramter.
void addPoint(ndarray::Array< T, 1, 1 > const &vin, T f)
Add a point to the pool of data used by GaussianProcess for interpolation.
void batchInterpolate(ndarray::Array< T, 1, 1 > mu, ndarray::Array< T, 1, 1 > variance, ndarray::Array< T, 2, 2 > const &queries) const
Interpolate a list of query points using all of the input data (rather than nearest neighbors)
GaussianProcess(const GaussianProcess &)=delete
T interpolate(ndarray::Array< T, 1, 1 > variance, ndarray::Array< T, 1, 1 > const &vin, int numberOfNeighbors) const
Interpolate the function value at one point using a specified number of nearest neighbors.
T selfInterpolate(ndarray::Array< T, 1, 1 > variance, int dex, int numberOfNeighbors) const
This method will interpolate the function on a data point for purposes of optimizing hyper parameters...
void removePoint(int dex)
This will remove a point from the data set.
void setCovariogram(std::shared_ptr< Covariogram< T > > const &covar)
Assign a different covariogram to this GaussianProcess.
void getData(ndarray::Array< T, 2, 2 > pts, ndarray::Array< T, 1, 1 > fn, ndarray::Array< int, 1, 1 > indices) const
Return a sub-sample the data underlying the Gaussian Process.
GaussianProcess(GaussianProcess &&)=delete
int getNPoints() const
return the number of data points stored in the GaussianProcess
GaussianProcess & operator=(const GaussianProcess &)=delete
This is a structure for keeping track of how long the interpolation methods spend on different parts ...
~GaussianProcessTimer()=default
GaussianProcessTimer & operator=(GaussianProcessTimer &&)=default
void addToSearch()
Adds time to _searchTime.
void addToVariance()
Adds time to _varianceTime.
void addToIteration()
Adds time to _iterationTime.
void start()
Starts the timer for an individual call to an interpolation routine.
void display()
Displays the current values of all times and _interpolationCount.
GaussianProcessTimer(GaussianProcessTimer const &)=default
void reset()
Resets all of the data members of GaussianProcessTimer to zero.
void addToEigen()
Adds time to _eigenTime.
void addToTotal(int i)
Adds time to _totalTime and adds counts to _interpolationCount.
GaussianProcessTimer & operator=(GaussianProcessTimer const &)=default
GaussianProcessTimer(GaussianProcessTimer &&)=default
The data for GaussianProcess is stored in a KD tree to facilitate nearest-neighbor searches.
KdTree(const KdTree &)=delete
void removePoint(int dex)
Remove a point from the tree.
void findNeighbors(ndarray::Array< int, 1, 1 > neighdex, ndarray::Array< double, 1, 1 > dd, ndarray::Array< const T, 1, 1 > const &v, int n_nn) const
Find the nearest neighbors of a point.
void addPoint(ndarray::Array< const T, 1, 1 > const &v)
Add a point to the tree.
void Initialize(ndarray::Array< T, 2, 2 > const &dt)
Build a KD Tree to store the data for GaussianProcess.
KdTree & operator=(KdTree &&)=delete
KdTree & operator=(const KdTree &)=delete
void getTreeNode(ndarray::Array< int, 1, 1 > const &v, int dex) const
Return the _tree information for a given data point.
int getNPoints() const
return the number of data points stored in the tree
T getData(int ipt, int idim) const
Return one element of one node on the tree.
a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
void setSigma0(double sigma0)
set the _sigma0 hyper parameter
~NeuralNetCovariogram() override
T operator()(ndarray::Array< const T, 1, 1 > const &, ndarray::Array< const T, 1, 1 > const &) const override
Actually evaluate the covariogram function relating two points you want to interpolate from.
void setSigma1(double sigma1)
set the _sigma1 hyper parameter
void setEllSquared(double ellSquared)
set the _ellSquared hyper parameter (the square of the characteristic length scale of the covariogram...
~SquaredExpCovariogram() override
T operator()(ndarray::Array< const T, 1, 1 > const &, ndarray::Array< const T, 1, 1 > const &) const override
Actually evaluate the covariogram function relating two points you want to interpolate from.
A base class for image defects.