LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
LeastSqFitter1d.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24
25#ifndef LEAST_SQ_FITTER_1D
26#define LEAST_SQ_FITTER_1D
27
28#include <cstdio>
29#include <memory>
30#include <vector>
31
32#include "Eigen/Core"
33#include "Eigen/SVD"
34
37
38namespace lsst {
39namespace meas {
40namespace astrom {
41namespace sip {
42
63template <class FittingFunc>
65public:
67 int order);
68
69 Eigen::VectorXd getParams();
70 Eigen::VectorXd getErrors();
71 FittingFunc getBestFitFunction();
72 double valueAt(double x);
74
75 double getChiSq();
76 double getReducedChiSq();
77
78private:
79 void initFunctions();
80
81 double func1d(double value, int exponent);
82
83 std::vector<double> _x, _y, _s;
84 int _order; // Degree of polynomial to fit, e.g 4=> cubic
85 int _nData; // Number of data points, == _x.size()
86
87 Eigen::JacobiSVD<Eigen::MatrixXd> _svd;
88 Eigen::VectorXd _par;
89
91};
92
93// The .cc part
94
103template <class FittingFunc>
105 const std::vector<double> &s, int order)
106 : _x(x), _y(y), _s(s), _order(order) {
107 if (order == 0) {
108 throw LSST_EXCEPT(pex::exceptions::RuntimeError, "Fit order must be >= 1");
109 }
110
111 _nData = _x.size();
112 if (_nData != static_cast<int>(_y.size())) {
113 throw LSST_EXCEPT(pex::exceptions::RuntimeError, "x and y vectors of different lengths");
114 }
115 if (_nData != static_cast<int>(_s.size())) {
116 throw LSST_EXCEPT(pex::exceptions::RuntimeError, "x and s vectors of different lengths");
117 }
118
119 if (_nData < _order) {
120 throw LSST_EXCEPT(pex::exceptions::RuntimeError, "Fewer data points than parameters");
121 }
122
123 initFunctions();
124
125 Eigen::MatrixXd design(_nData, _order);
126 Eigen::VectorXd rhs(_nData);
127 for (int i = 0; i < _nData; ++i) {
128 rhs[i] = y[i] / _s[i];
129 for (int j = 0; j < _order; ++j) {
130 design(i, j) = func1d(_x[i], j) / _s[i];
131 }
132 }
133 _svd.compute(design, Eigen::ComputeThinU | Eigen::ComputeThinV);
134 _par = _svd.solve(rhs);
135}
136
138template <class FittingFunc>
140 Eigen::VectorXd vec = Eigen::VectorXd::Zero(_order);
141 for (int i = 0; i < _order; ++i) {
142 vec(i) = _par(i);
143 }
144 return vec;
145}
146
148template <class FittingFunc>
150 Eigen::ArrayXd variance(_order);
151 for (int i = 0; i < _order; ++i) {
152 variance[i] = _svd.matrixV().row(i).dot(
153 (_svd.singularValues().array().inverse().square() * _svd.matrixV().col(i).array()).matrix());
154 }
155 return variance.sqrt().matrix();
156}
157
159template <class FittingFunc>
161 // FittingFunc and LeastSqFitter disagree on the definition of order of a function.
162 // LSF says that a linear function is order 2 (two coefficients), FF says only 1
163 FittingFunc func(_order - 1);
164
165 for (int i = 0; i < _order; ++i) {
166 func.setParameter(i, _par(i));
167 }
168 return func;
169}
170
172template <class FittingFunc>
174 FittingFunc f = getBestFitFunction();
175
176 return f(x);
177}
178
181template <class FittingFunc>
184 out.reserve(_nData);
185
186 FittingFunc f = getBestFitFunction();
187
188 for (int i = 0; i < _nData; ++i) {
189 out.push_back(_y[i] - f(_x[i]));
190 }
191
192 return out;
193}
194
198template <class FittingFunc>
200 FittingFunc f = getBestFitFunction();
201
202 double chisq = 0;
203 for (int i = 0; i < _nData; ++i) {
204 double val = _y[i] - f(_x[i]);
205 val /= _s[i];
206 chisq += pow(val, 2);
207 }
208
209 return chisq;
210}
211
217template <class FittingFunc>
219 return getChiSq() / (double)(_nData - _order);
220}
221
224template <class FittingFunc>
226 _funcArray.reserve(_order);
227
229 coeff.reserve(_order);
230
231 coeff.push_back(1.0);
232 for (int i = 0; i < _order; ++i) {
233 std::shared_ptr<FittingFunc> p(new FittingFunc(coeff));
234 _funcArray.push_back(p);
235 coeff[i] = 0.0;
236 coeff.push_back(1.0); // coeff now looks like [0,0,...,0,1]
237 }
238}
239
240template <class FittingFunc>
241double LeastSqFitter1d<FittingFunc>::func1d(double value, int exponent) {
242 return (*_funcArray[exponent])(value);
243}
244
245} // namespace sip
246} // namespace astrom
247} // namespace meas
248} // namespace lsst
249
250#endif
double x
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
afw::table::Key< afw::table::Array< VariancePixelT > > variance
int y
Definition: SpanSet.cc:48
Fit an lsst::afw::math::Function1 object to a set of data points in one dimension.
std::vector< double > residuals()
Return a vector of residuals of the fit (i.e the difference between the input y values,...
double getChiSq()
Return a measure of the goodness of fit.
Eigen::VectorXd getParams()
Return the best fit parameters as an Eigen::Matrix.
double getReducedChiSq()
Return a measure of the goodness of fit.
Eigen::VectorXd getErrors()
Return the 1 sigma uncertainties in the best fit parameters as an Eigen::Matrix.
FittingFunc getBestFitFunction()
Return the best fit polynomial as a lsst::afw::math::Function1 object.
LeastSqFitter1d(const std::vector< double > &x, const std::vector< double > &y, const std::vector< double > &s, int order)
Fit a 1d polynomial to a set of data points z(x, y)
double valueAt(double x)
Calculate the value of the function at a given point.
Reports errors that are due to events beyond the control of the program.
Definition: Runtime.h:104
A base class for image defects.
T push_back(T... args)
T reserve(T... args)
T size(T... args)
int exponent
Definition: orientation.cc:41
ImageT val
Definition: CR.cc:146
table::Key< table::Array< double > > coeff
Definition: PsfexPsf.cc:362
table::Key< int > order