LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
Statistics.h
Go to the documentation of this file.
1// -*- LSST-C++ -*-
2
3/*
4 * LSST Data Management System
5 * Copyright 2008, 2009, 2010 LSST Corporation.
6 *
7 * This product includes software developed by the
8 * LSST Project (http://www.lsst.org/).
9 *
10 * This program is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 3 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the LSST License Statement and
21 * the GNU General Public License along with this program. If not,
22 * see <http://www.lsstcorp.org/LegalNotices/>.
23 */
24
25#if !defined(LSST_AFW_MATH_STATISTICS_H)
26#define LSST_AFW_MATH_STATISTICS_H
37#include <algorithm>
38#include <cassert>
39#include <limits>
40#include "boost/iterator/iterator_adaptor.hpp"
41#include <memory>
44
45namespace lsst {
46namespace afw {
47namespace image {
48template <typename>
49class Image;
50template <typename, typename, typename>
51class MaskedImage;
52} // namespace image
53namespace math {
54template <typename>
55class MaskedVector; // forward declaration
56
57using WeightPixel = lsst::afw::image::VariancePixel; // Type used for weights
58
63 NOTHING = 0x0,
64 ERRORS = 0x1,
65 NPOINT = 0x2,
66 MEAN = 0x4,
67 STDEV = 0x8,
68 VARIANCE = 0x10,
69 MEDIAN = 0x20,
70 IQRANGE = 0x40,
71 MEANCLIP = 0x80,
72 STDEVCLIP = 0x100,
73 VARIANCECLIP = 0x200,
75 MIN = 0x400,
76 MAX = 0x800,
77 SUM = 0x1000,
78 MEANSQUARE = 0x2000,
79 ORMASK = 0x4000,
80 NCLIPPED = 0x8000,
81 NMASKED = 0x10000
82};
85
93public:
94 enum WeightsBoolean { WEIGHTS_FALSE = 0, WEIGHTS_TRUE = 1, WEIGHTS_NONE }; // initial state is NONE
95
96 StatisticsControl(double numSigmaClip = 3.0,
97 int numIter = 3,
99 0x0,
100 bool isNanSafe = true,
101 WeightsBoolean useWeights =
103 )
104 : _numSigmaClip(numSigmaClip),
105 _numIter(numIter),
106 _andMask(andMask),
107 _noGoodPixelsMask(0x0),
108 _isNanSafe(isNanSafe),
109 _useWeights(useWeights),
110 _calcErrorFromInputVariance(false),
111 _maskPropagationThresholds() {
112 try {
113 _noGoodPixelsMask = lsst::afw::image::Mask<>::getPlaneBitMask("NO_DATA");
115 ; // Mask has no NO_DATA plane defined
116 }
117
118 assert(_numSigmaClip > 0);
119 assert(_numIter > 0);
120 }
121
123
128 double getMaskPropagationThreshold(int bit) const;
129 void setMaskPropagationThreshold(int bit, double threshold);
131
132 double getNumSigmaClip() const noexcept { return _numSigmaClip; }
133 int getNumIter() const noexcept { return _numIter; }
134 int getAndMask() const noexcept { return _andMask; }
135 int getNoGoodPixelsMask() const noexcept { return _noGoodPixelsMask; }
136 bool getNanSafe() const noexcept { return _isNanSafe; }
137 bool getWeighted() const noexcept { return _useWeights == WEIGHTS_TRUE ? true : false; }
138 bool getWeightedIsSet() const noexcept { return _useWeights != WEIGHTS_NONE ? true : false; }
139 bool getCalcErrorFromInputVariance() const noexcept { return _calcErrorFromInputVariance; }
140
141 void setNumSigmaClip(double numSigmaClip) {
142 if (!(numSigmaClip > 0)) {
144 "numSigmaClip has to be positive.");
145 }
146 _numSigmaClip = numSigmaClip;
147 }
148 void setNumIter(int numIter) {
149 if (!(numIter > 0)) {
151 "numIter has to be positive.");
152 }
153 _numIter = numIter;
154 }
155 void setAndMask(int andMask) { _andMask = andMask; }
156 void setNoGoodPixelsMask(int noGoodPixelsMask) { _noGoodPixelsMask = noGoodPixelsMask; }
157 void setNanSafe(bool isNanSafe) noexcept { _isNanSafe = isNanSafe; }
158 void setWeighted(bool useWeights) noexcept { _useWeights = useWeights ? WEIGHTS_TRUE : WEIGHTS_FALSE; }
159 void setCalcErrorFromInputVariance(bool calcErrorFromInputVariance) noexcept {
160 _calcErrorFromInputVariance = calcErrorFromInputVariance;
161 }
162
163private:
164 friend class Statistics;
165
166 double _numSigmaClip; // Number of standard deviations to clip at
167 int _numIter; // Number of iterations
168 int _andMask; // and-Mask to specify which mask planes to ignore
169 int _noGoodPixelsMask; // mask to set if no values are acceptable
170 bool _isNanSafe; // Check for NaNs & Infs before running (slower)
171 WeightsBoolean _useWeights; // Calculate weighted statistics (enum because of 3-valued logic)
172 bool _calcErrorFromInputVariance; // Calculate errors from the input variances, if available
173 std::vector<double> _maskPropagationThresholds; // Thresholds for when to propagate mask bits,
174 // treated like a dict (unset bits are set to 1.0)
175};
176
220class Statistics final {
221public:
224
237 template <typename ImageT, typename MaskT, typename VarianceT>
238 explicit Statistics(ImageT const &img, MaskT const &msk, VarianceT const &var, int const flags,
239 StatisticsControl const &sctrl = StatisticsControl());
240
249 template <typename ImageT, typename MaskT, typename VarianceT, typename WeightT>
250 explicit Statistics(ImageT const &img, MaskT const &msk, VarianceT const &var, WeightT const &weights,
251 int const flags, StatisticsControl const &sctrl = StatisticsControl());
252
253 Statistics(Statistics const &) = default;
254 Statistics(Statistics &&) = default;
255 Statistics &operator=(Statistics const &) = default;
257 ~Statistics() noexcept = default;
258
272 Value getResult(Property const prop = NOTHING) const;
273
281 double getError(Property const prop = NOTHING) const;
287 double getValue(Property const prop = NOTHING) const;
288 lsst::afw::image::MaskPixel getOrMask() const noexcept { return _allPixelOrMask; }
289
290private:
291 long _flags; // The desired calculation
292
293 int _n; // number of pixels in the image
294 Value _mean; // the image's mean
295 Value _variance; // the image's variance
296 double _min; // the image's minimum
297 double _max; // the image's maximum
298 double _sum; // the sum of all the image's pixels
299 Value _meanclip; // the image's N-sigma clipped mean
300 Value _varianceclip; // the image's N-sigma clipped variance
301 Value _median; // the image's median
302 int _nClipped; // number of pixels clipped
303 int _nMasked; // number of pixels masked
304 double _iqrange; // the image's interquartile range
305 lsst::afw::image::MaskPixel _allPixelOrMask; // the 'or' of all masked pixels
306
307 StatisticsControl _sctrl; // the control structure
308 bool _weightsAreMultiplicative; // Multiply by weights rather than dividing by them
309
318 template <typename ImageT, typename MaskT, typename VarianceT, typename WeightT>
319 void doStatistics(ImageT const &img, MaskT const &msk, VarianceT const &var, WeightT const &weights,
320 int const flags, StatisticsControl const &sctrl);
321};
322
323/* ************************************ The factory functions ********************************* */
328template <typename ValueT>
329class infinite_iterator : public boost::iterator_adaptor<infinite_iterator<ValueT>, const ValueT *,
330 const ValueT, boost::forward_traversal_tag> {
331public:
332 infinite_iterator() : infinite_iterator::iterator_adaptor_(0) {}
333 explicit infinite_iterator(const ValueT *p) : infinite_iterator::iterator_adaptor_(p) {}
334
335private:
337 void increment() noexcept { ; } // never actually advance the iterator
338};
343template <typename ValueT>
345public:
347 explicit MaskImposter(ValueT val = 0) noexcept { _val[0] = val; }
348 x_iterator row_begin(int) const noexcept { return x_iterator(_val); }
349
350private:
351 ValueT _val[1];
352};
353
358template <typename Pixel>
360 lsst::afw::image::Mask<image::MaskPixel> const &msk, int const flags,
361 StatisticsControl const &sctrl = StatisticsControl()) {
363 return Statistics(img, msk, var, flags, sctrl);
364}
365
370template <typename ImageT, typename MaskT, typename VarianceT>
371Statistics makeStatistics(ImageT const &img, MaskT const &msk, VarianceT const &var, int const flags,
372 StatisticsControl const &sctrl = StatisticsControl()) {
373 return Statistics(img, msk, var, flags, sctrl);
374}
375
380template <typename Pixel>
382 StatisticsControl const &sctrl = StatisticsControl()) {
383 if (sctrl.getWeighted() || sctrl.getCalcErrorFromInputVariance()) {
384 return Statistics(*mimg.getImage(), *mimg.getMask(), *mimg.getVariance(), flags, sctrl);
385 } else {
387 return Statistics(*mimg.getImage(), *mimg.getMask(), var, flags, sctrl);
388 }
389}
390
395template <typename Pixel>
397 lsst::afw::image::Image<WeightPixel> const &weights, int const flags,
398 StatisticsControl const &sctrl = StatisticsControl()) {
399 if (sctrl.getWeighted() || sctrl.getCalcErrorFromInputVariance() ||
400 (!sctrl.getWeightedIsSet() && (weights.getWidth() != 0 && weights.getHeight() != 0))) {
401 return Statistics(*mimg.getImage(), *mimg.getMask(), *mimg.getVariance(), weights, flags, sctrl);
402 } else {
404 return Statistics(*mimg.getImage(), *mimg.getMask(), var, weights, flags, sctrl);
405 }
406}
407
418 StatisticsControl const &sctrl = StatisticsControl());
419
424template <typename Pixel>
427 int const flags,
428 StatisticsControl const &sctrl = StatisticsControl()
429) {
430 // make a phony mask that will be compiled out
433 return Statistics(img, msk, var, flags, sctrl);
434}
435
440template <typename ValueT>
441class ImageImposter final {
442public:
443 // types we'll use in Statistics
446 using Pixel = ValueT;
447
448 // constructors for std::vector<>, and copy constructor
449 // These are both shallow! ... no actual copying of values
450 explicit ImageImposter(std::vector<ValueT> const &v) : _v(v) {}
451 explicit ImageImposter(ImageImposter<ValueT> const &img) : _v(img._getVector()) {}
452
453 // The methods we'll use in Statistics
454 x_iterator row_begin(int) const noexcept { return _v.begin(); }
455 x_iterator row_end(int) const noexcept { return _v.end(); }
456 int getWidth() const noexcept { return _v.size(); }
457 int getHeight() const noexcept { return 1; }
460 }
461
462 bool empty() const noexcept { return _v.empty(); }
463
464private:
465 std::vector<ValueT> const &_v; // a private reference to the data
466 std::vector<ValueT> const &_getVector() const { return _v; } // get the ref for the copyCon
467};
468
473template <typename EntryT>
475 int const flags,
476 StatisticsControl const &sctrl = StatisticsControl()
477) {
478 ImageImposter<EntryT> img(v); // wrap the vector in a fake image
479 MaskImposter<lsst::afw::image::MaskPixel> msk; // instantiate a fake mask that will be compiled out.
481 return Statistics(img, msk, var, flags, sctrl);
482}
483
488template <typename EntryT>
490 std::vector<WeightPixel> const &vweights,
491 int const flags,
492 StatisticsControl const &sctrl = StatisticsControl()
493) {
494 ImageImposter<EntryT> img(v); // wrap the vector in a fake image
495 MaskImposter<lsst::afw::image::MaskPixel> msk; // instantiate a fake mask that will be compiled out.
497
498 ImageImposter<WeightPixel> weights(vweights);
499
500 return Statistics(img, msk, var, weights, flags, sctrl);
501}
502
507template <typename EntryT>
509 int const flags,
510 StatisticsControl const &sctrl = StatisticsControl()
511) {
512 if (sctrl.getWeighted() || sctrl.getCalcErrorFromInputVariance()) {
513 return Statistics(*mv.getImage(), *mv.getMask(), *mv.getVariance(), flags, sctrl);
514 } else {
516 return Statistics(*mv.getImage(), *mv.getMask(), var, flags, sctrl);
517 }
518}
519
524template <typename EntryT>
526 std::vector<WeightPixel> const &vweights,
527 int const flags,
528 StatisticsControl const &sctrl = StatisticsControl()
529) {
530 ImageImposter<WeightPixel> weights(vweights);
531
532 if (sctrl.getWeighted() || sctrl.getCalcErrorFromInputVariance()) {
533 return Statistics(*mv.getImage(), *mv.getMask(), *mv.getVariance(), weights, flags, sctrl);
534 } else {
536 return Statistics(*mv.getImage(), *mv.getMask(), var, weights, flags, sctrl);
537 }
538}
539} // namespace math
540} // namespace afw
541} // namespace lsst
542
543#endif
#define LSST_EXCEPT(type,...)
Create an exception with a given type.
Definition: Exception.h:48
int getWidth() const
Return the number of columns in the image.
Definition: ImageBase.h:294
int getHeight() const
Return the number of rows in the image.
Definition: ImageBase.h:296
A class to represent a 2-dimensional array of pixels.
Definition: Image.h:51
Represent a 2-dimensional array of bitmask pixels.
Definition: Mask.h:77
static MaskPixelT getPlaneBitMask(const std::vector< std::string > &names)
Return the bitmask corresponding to a vector of plane names OR'd together.
Definition: Mask.cc:412
A class to manipulate images, masks, and variance as a single object.
Definition: MaskedImage.h:73
VariancePtr getVariance() const
Return a (shared_ptr to) the MaskedImage's variance.
Definition: MaskedImage.h:1051
MaskPtr getMask() const
Return a (shared_ptr to) the MaskedImage's mask.
Definition: MaskedImage.h:1030
ImagePtr getImage() const
Return a (shared_ptr to) the MaskedImage's image.
Definition: MaskedImage.h:1018
A vector wrapper to provide a vector with the necessary methods and typedefs to be processed by Stati...
Definition: Statistics.h:441
lsst::geom::Extent2I getDimensions() const noexcept
Definition: Statistics.h:458
x_iterator row_begin(int) const noexcept
Definition: Statistics.h:454
typename std::vector< ValueT >::const_iterator fast_iterator
Definition: Statistics.h:445
ImageImposter(ImageImposter< ValueT > const &img)
Definition: Statistics.h:451
ImageImposter(std::vector< ValueT > const &v)
Definition: Statistics.h:450
typename std::vector< ValueT >::const_iterator x_iterator
Definition: Statistics.h:444
bool empty() const noexcept
Definition: Statistics.h:462
int getWidth() const noexcept
Definition: Statistics.h:456
x_iterator row_end(int) const noexcept
Definition: Statistics.h:455
int getHeight() const noexcept
Definition: Statistics.h:457
A Mask wrapper to provide an infinite_iterator for Mask::row_begin().
Definition: Statistics.h:344
infinite_iterator< ValueT > x_iterator
Definition: Statistics.h:346
MaskImposter(ValueT val=0) noexcept
Definition: Statistics.h:347
x_iterator row_begin(int) const noexcept
Definition: Statistics.h:348
lsst::afw::image::MaskedImage< EntryT >::VariancePtr getVariance() const
Definition: MaskedVector.h:94
lsst::afw::image::MaskedImage< EntryT >::MaskPtr getMask() const
Definition: MaskedVector.h:91
lsst::afw::image::MaskedImage< EntryT >::ImagePtr getImage() const
Definition: MaskedVector.h:88
Pass parameters to a Statistics object.
Definition: Statistics.h:92
void setNumSigmaClip(double numSigmaClip)
Definition: Statistics.h:141
double getMaskPropagationThreshold(int bit) const
When pixels with the given bit are rejected, we count what fraction the rejected pixels would have co...
Definition: Statistics.cc:718
bool getCalcErrorFromInputVariance() const noexcept
Definition: Statistics.h:139
int getAndMask() const noexcept
Definition: Statistics.h:134
StatisticsControl(double numSigmaClip=3.0, int numIter=3, lsst::afw::image::MaskPixel andMask=0x0, bool isNanSafe=true, WeightsBoolean useWeights=WEIGHTS_NONE)
Definition: Statistics.h:96
void setCalcErrorFromInputVariance(bool calcErrorFromInputVariance) noexcept
Definition: Statistics.h:159
bool getWeightedIsSet() const noexcept
Definition: Statistics.h:138
void setMaskPropagationThreshold(int bit, double threshold)
Definition: Statistics.cc:726
void setWeighted(bool useWeights) noexcept
Definition: Statistics.h:158
double getNumSigmaClip() const noexcept
Definition: Statistics.h:132
bool getWeighted() const noexcept
Definition: Statistics.h:137
int getNoGoodPixelsMask() const noexcept
Definition: Statistics.h:135
int getNumIter() const noexcept
Definition: Statistics.h:133
bool getNanSafe() const noexcept
Definition: Statistics.h:136
void setNoGoodPixelsMask(int noGoodPixelsMask)
Definition: Statistics.h:156
void setNanSafe(bool isNanSafe) noexcept
Definition: Statistics.h:157
A class to evaluate image statistics.
Definition: Statistics.h:220
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, int const flags, StatisticsControl const &sctrl=StatisticsControl())
The makeStatistics() overload to handle regular (non-masked) Images.
Definition: Statistics.h:425
Statistics makeStatistics(std::vector< EntryT > const &v, int const flags, StatisticsControl const &sctrl=StatisticsControl())
The makeStatistics() overload to handle std::vector<>
Definition: Statistics.h:474
Statistics makeStatistics(lsst::afw::image::MaskedImage< Pixel > const &mimg, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle MaskedImages, just pass the getImage() and getMask() values right on through.
Definition: Statistics.h:381
Statistics & operator=(Statistics const &)=default
Value getResult(Property const prop=NOTHING) const
Return the value and error in the specified statistic (e.g.
Definition: Statistics.cc:922
Statistics makeStatistics(ImageT const &img, MaskT const &msk, VarianceT const &var, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a straight front-end to the constructor.
Definition: Statistics.h:371
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition: Statistics.h:359
double getError(Property const prop=NOTHING) const
Return the error in the desired property (if specified in the constructor)
Definition: Statistics.cc:1049
Statistics & operator=(Statistics &&)=default
~Statistics() noexcept=default
Statistics makeStatistics(lsst::afw::math::MaskedVector< EntryT > const &mv, std::vector< WeightPixel > const &vweights, int const flags, StatisticsControl const &sctrl=StatisticsControl())
The makeStatistics() overload to handle lsst::afw::math::MaskedVector<>
Definition: Statistics.h:525
Statistics makeStatistics(lsst::afw::math::MaskedVector< EntryT > const &mv, int const flags, StatisticsControl const &sctrl=StatisticsControl())
The makeStatistics() overload to handle lsst::afw::math::MaskedVector<>
Definition: Statistics.h:508
Statistics makeStatistics(lsst::afw::image::MaskedImage< Pixel > const &mimg, lsst::afw::image::Image< WeightPixel > const &weights, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle MaskedImages, just pass the getImage() and getMask() values right on through.
Definition: Statistics.h:396
Statistics(ImageT const &img, MaskT const &msk, VarianceT const &var, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Constructor for Statistics object.
Definition: Statistics.cc:764
double getValue(Property const prop=NOTHING) const
Return the value of the desired property (if specified in the constructor)
Definition: Statistics.cc:1047
std::pair< double, double > Value
The type used to report (value, error) for desired statistics.
Definition: Statistics.h:223
Statistics makeStatistics(std::vector< EntryT > const &v, std::vector< WeightPixel > const &vweights, int const flags, StatisticsControl const &sctrl=StatisticsControl())
The makeStatistics() overload to handle std::vector<>
Definition: Statistics.h:489
Statistics(Statistics const &)=default
lsst::afw::image::MaskPixel getOrMask() const noexcept
Definition: Statistics.h:288
Statistics(Statistics &&)=default
This iterator will never increment.
Definition: Statistics.h:330
friend class boost::iterator_core_access
Definition: Statistics.h:336
infinite_iterator(const ValueT *p)
Definition: Statistics.h:333
Reports invalid arguments.
Definition: Runtime.h:66
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
float VariancePixel
default type for MaskedImage variance images
std::int32_t MaskPixel
default type for Masks and MaskedImage Masks
Statistics makeStatistics(lsst::afw::image::Image< Pixel > const &img, lsst::afw::image::Mask< image::MaskPixel > const &msk, int const flags, StatisticsControl const &sctrl=StatisticsControl())
Handle a watered-down front-end to the constructor (no variance)
Definition: Statistics.h:359
Property
control what is calculated
Definition: Statistics.h:62
@ ORMASK
get the or-mask of all pixels used.
Definition: Statistics.h:79
@ ERRORS
Include errors of requested quantities.
Definition: Statistics.h:64
@ VARIANCECLIP
estimate sample N-sigma clipped variance (N set in StatisticsControl, default=3)
Definition: Statistics.h:73
@ MEANSQUARE
find mean value of square of pixel values
Definition: Statistics.h:78
@ MIN
estimate sample minimum
Definition: Statistics.h:75
@ NCLIPPED
number of clipped points
Definition: Statistics.h:80
@ NOTHING
We don't want anything.
Definition: Statistics.h:63
@ STDEV
estimate sample standard deviation
Definition: Statistics.h:67
@ NMASKED
number of masked points
Definition: Statistics.h:81
@ STDEVCLIP
estimate sample N-sigma clipped stdev (N set in StatisticsControl, default=3)
Definition: Statistics.h:72
@ VARIANCE
estimate sample variance
Definition: Statistics.h:68
@ MEDIAN
estimate sample median
Definition: Statistics.h:69
@ MAX
estimate sample maximum
Definition: Statistics.h:76
@ SUM
find sum of pixels in the image
Definition: Statistics.h:77
@ IQRANGE
estimate sample inter-quartile range
Definition: Statistics.h:70
@ MEAN
estimate sample mean
Definition: Statistics.h:66
@ MEANCLIP
estimate sample N-sigma clipped mean (N set in StatisticsControl, default=3)
Definition: Statistics.h:71
@ NPOINT
number of sample points
Definition: Statistics.h:65
Property stringToStatisticsProperty(std::string const property)
Conversion function to switch a string to a Property (see Statistics.h)
Definition: Statistics.cc:738
lsst::afw::image::VariancePixel WeightPixel
Definition: Statistics.h:57
Extent< int, 2 > Extent2I
Definition: Extent.h:397
A base class for image defects.
ImageT val
Definition: CR.cc:146