29from lsst.meas.base import SingleFrameMeasurementTask, SingleFrameMeasurementConfig, \
30 SingleFramePluginConfig, SingleFramePlugin
32from lsst.utils.logging
import getLogger
34__all__ = (
"DipoleMeasurementConfig",
"DipoleMeasurementTask",
"DipoleAnalysis",
"DipoleDeblender",
35 "SourceFlagChecker",
"ClassificationDipoleConfig",
"ClassificationDipolePlugin")
39 """Configuration for classification of detected diaSources as dipole or not"""
40 minSn = pexConfig.Field(
41 doc=
"Minimum quadrature sum of positive+negative lobe S/N to be considered a dipole",
42 dtype=float, default=np.sqrt(2) * 5.0,
44 maxFluxRatio = pexConfig.Field(
45 doc=
"Maximum flux ratio in either lobe to be considered a dipole",
46 dtype=float, default=0.65
50@register("ip_diffim_ClassificationDipole")
52 """A plugin to classify whether a diaSource is a dipole.
55 ConfigClass = ClassificationDipoleConfig
66 def __init__(self, config, name, schema, metadata):
67 SingleFramePlugin.__init__(self, config, name, schema, metadata)
69 self.
keyProbabilitykeyProbability = schema.addField(name +
"_value", type=
"D",
70 doc=
"Set to 1 for dipoles, else 0.")
71 self.
keyFlagkeyFlag = schema.addField(name +
"_flag", type=
"Flag", doc=
"Set to 1 for any fatal failure.")
75 negFlux = np.abs(measRecord.get(
"ip_diffim_PsfDipoleFlux_neg_instFlux"))
76 negFluxFlag = measRecord.get(
"ip_diffim_PsfDipoleFlux_neg_flag")
77 posFlux = np.abs(measRecord.get(
"ip_diffim_PsfDipoleFlux_pos_instFlux"))
78 posFluxFlag = measRecord.get(
"ip_diffim_PsfDipoleFlux_pos_flag")
80 if negFluxFlag
or posFluxFlag:
84 totalFlux = negFlux + posFlux
87 passesFluxNeg = (negFlux / totalFlux) < self.
configconfig.maxFluxRatio
88 passesFluxPos = (posFlux / totalFlux) < self.
configconfig.maxFluxRatio
89 if (passesSn
and passesFluxPos
and passesFluxNeg):
96 def fail(self, measRecord, error=None):
97 measRecord.set(self.
keyFlagkeyFlag,
True)
101 """Measurement of detected diaSources as dipoles"""
104 SingleFrameMeasurementConfig.setDefaults(self)
109 "ip_diffim_NaiveDipoleCentroid",
110 "ip_diffim_NaiveDipoleFlux",
111 "ip_diffim_PsfDipoleFlux",
112 "ip_diffim_ClassificationDipole",
115 self.
slotsslots.calibFlux =
None
116 self.
slotsslots.modelFlux =
None
117 self.
slotsslots.gaussianFlux =
None
118 self.
slotsslots.shape =
None
119 self.
slotsslots.centroid =
"ip_diffim_NaiveDipoleCentroid"
124 """Measurement of Sources, specifically ones from difference images, for characterization as dipoles
128 sources : 'lsst.afw.table.SourceCatalog'
129 Sources that will be measured
130 badFlags : `list` of `dict`
131 A list of flags that will be used to determine
if there was a measurement problem
135 The list of badFlags will be used to make a list of keys to check
for measurement flags on. By
136 default the centroid keys are added to this list
140 This
class provides
a default configuration for running Source measurement on
image differences.
145 "Measurement of detected diaSources as dipoles"
147 SingleFrameMeasurementConfig.setDefaults(self)
148 self.
pluginsplugins = [
"base_CircularApertureFlux",
152 "ip_diffim_NaiveDipoleCentroid",
153 "ip_diffim_NaiveDipoleFlux",
154 "ip_diffim_PsfDipoleFlux",
155 "ip_diffim_ClassificationDipole",
157 self.slots.calibFlux =
None
158 self.slots.modelFlux =
None
159 self.slots.instFlux =
None
160 self.slots.shape =
None
161 self.slots.centroid =
"ip_diffim_NaiveDipoleCentroid"
162 self.doReplaceWithNoise =
False
164 These plugins enabled by default allow the user to test the hypothesis that the Source
is a dipole.
165 This includes a set of measurements derived
from intermediate base classes
166 DipoleCentroidAlgorithm
and DipoleFluxAlgorithm.
167 Their respective algorithm control classes are defined
in
168 DipoleCentroidControl
and DipoleFluxControl.
169 Each centroid
and flux measurement will have _neg (negative)
170 and _pos (positive lobe) fields.
172 The first set of measurements uses a
"naive" alrogithm
173 for centroid
and flux measurements, implemented
in
174 NaiveDipoleCentroidControl
and NaiveDipoleFluxControl.
175 The algorithm uses a naive 3x3 weighted moment around
176 the nominal centroids of each peak
in the Source Footprint. These algorithms fill the table fields
177 ip_diffim_NaiveDipoleCentroid*
and ip_diffim_NaiveDipoleFlux*
179 The second set of measurements undertakes a joint-Psf model on the negative
180 and positive lobe simultaneously. This fit simultaneously solves
for the negative
and positive
181 lobe centroids
and fluxes using non-linear least squares minimization.
182 The fields are stored
in table elements ip_diffim_PsfDipoleFlux*.
184 Because this Task
is just a config
for SingleFrameMeasurementTask, the same result may be acheived by
185 manually editing the config
and running SingleFrameMeasurementTask. For example:
190 config.plugins.names = [
"base_PsfFlux",
191 "ip_diffim_PsfDipoleFlux",
192 "ip_diffim_NaiveDipoleFlux",
193 "ip_diffim_NaiveDipoleCentroid",
194 "ip_diffim_ClassificationDipole",
195 "base_CircularApertureFlux",
198 config.slots.calibFlux =
None
199 config.slots.modelFlux =
None
200 config.slots.instFlux =
None
201 config.slots.shape =
None
202 config.slots.centroid =
"ip_diffim_NaiveDipoleCentroid"
203 config.doReplaceWithNoise =
False
205 schema = afwTable.SourceTable.makeMinimalSchema()
210 The ``lsst.pipe.base.cmdLineTask.CmdLineTask`` command line task interface supports a
211 flag-d/--debug to
import debug.py
from your PYTHONPATH. The relevant contents of debug.py
212 for this Task include:
220 if name ==
"lsst.ip.diffim.dipoleMeasurement":
222 di.maskTransparency = 90
223 di.displayDiaSources =
True
228 config.slots.calibFlux =
None
229 config.slots.modelFlux =
None
230 config.slots.gaussianFlux =
None
231 config.slots.shape =
None
232 config.slots.centroid =
"ip_diffim_NaiveDipoleCentroid"
233 config.doReplaceWithNoise =
False
235 This code
is dipoleMeasTask.py
in the examples directory,
and can be run
as e.g.
239 examples/dipoleMeasTask.py
240 examples/dipoleMeasTask.py --debug
241 examples/dipoleMeasTask.py --debug --image /path/to/image.fits
245 Start the processing by parsing the command line, where the user has the option of
246 enabling debugging output
and/
or sending their own image
for demonstration
247 (
in case they have
not downloaded the afwdata package).
251 if __name__ ==
"__main__":
253 parser = argparse.ArgumentParser(
254 description=
"Demonstrate the use of SourceDetectionTask and DipoleMeasurementTask")
255 parser.add_argument(
'--debug',
'-d', action=
"store_true", help=
"Load debug.py?", default=
False)
256 parser.add_argument(
"--image",
"-i", help=
"User defined image", default=
None)
257 args = parser.parse_args()
261 debug.lsstDebug.frame = 2
262 except ImportError
as e:
263 print(e, file=sys.stderr)
266 The processing occurs
in the run function. We first extract an exposure
from disk
or afwdata, displaying
272 exposure = loadData(args.image)
274 afwDisplay.Display(frame=1).
mtv(exposure)
276 Create a default source schema that we will append fields to
as we add more algorithms:
280 schema = afwTable.SourceTable.makeMinimalSchema()
282 Create the detection
and measurement Tasks,
with some minor tweaking of their configs:
287 config = SourceDetectionTask.ConfigClass()
288 config.thresholdPolarity =
"both"
289 config.background.isNanSafe =
True
290 config.thresholdValue = 3
293 config = DipoleMeasurementTask.ConfigClass()
294 config.plugins.names.remove(
'base_SkyCoord')
298 Having fully initialied the schema, we create a Source table
from it:
303 tab = afwTable.SourceTable.make(schema)
310 results = detectionTask.run(tab, exposure)
312 Because we are looking
for dipoles, we need to merge the positive
and negative detections:
317 fpSet = results.fpSets.positive
319 fpSet.merge(results.fpSets.negative, growFootprint, growFootprint,
False)
321 fpSet.makeSources(diaSources)
322 print(
"Merged %s Sources into %d diaSources (from %d +ve, %d -ve)" % (len(results.sources),
324 results.fpSets.numPos,
325 results.fpSets.numNeg))
327 Finally, perform measurement (both standard
and dipole-specialized) on the merged sources:
331 measureTask.run(diaSources, exposure)
333 Optionally display debugging information:
340 dpa.displayDipoles(exposure, diaSources)
343 ConfigClass = DipoleMeasurementConfig
344 _DefaultName = "dipoleMeasurement"
352 """Functor class to check whether a diaSource has flags set that should cause it to be labeled bad."""
355 self.
badFlagsbadFlags = [
'base_PixelFlags_flag_edge',
'base_PixelFlags_flag_interpolatedCenter',
356 'base_PixelFlags_flag_saturatedCenter']
357 if badFlags
is not None:
358 for flag
in badFlags:
360 self.
keyskeys = [sources.getSchema().find(name).key
for name
in self.
badFlagsbadFlags]
361 self.
keyskeys.
append(sources.table.getCentroidFlagKey())
364 """Call the source flag checker on a single Source
369 Source that will be examined
371 for k
in self.
keyskeys:
378 """Functor class that provides (S/N, position, orientation) of measured dipoles"""
384 """Parse information returned from dipole measurement
389 The source that will be examined"""
390 return self.getSn(source), self.getCentroid(source), self.getOrientation(source)
393 """Get the total signal-to-noise of the dipole; total S/N is from positive and negative lobe
398 The source that will be examined"""
400 posflux = source.get("ip_diffim_PsfDipoleFlux_pos_instFlux")
401 posfluxErr = source.get(
"ip_diffim_PsfDipoleFlux_pos_instFluxErr")
402 negflux = source.get(
"ip_diffim_PsfDipoleFlux_neg_instFlux")
403 negfluxErr = source.get(
"ip_diffim_PsfDipoleFlux_neg_instFluxErr")
406 if (posflux < 0)
is (negflux < 0):
409 return np.sqrt((posflux/posfluxErr)**2 + (negflux/negfluxErr)**2)
412 """Get the centroid of the dipole; average of positive and negative lobe
417 The source that will be examined"""
419 negCenX = source.get("ip_diffim_PsfDipoleFlux_neg_centroid_x")
420 negCenY = source.get(
"ip_diffim_PsfDipoleFlux_neg_centroid_y")
421 posCenX = source.get(
"ip_diffim_PsfDipoleFlux_pos_centroid_x")
422 posCenY = source.get(
"ip_diffim_PsfDipoleFlux_pos_centroid_y")
423 if (np.isinf(negCenX)
or np.isinf(negCenY)
or np.isinf(posCenX)
or np.isinf(posCenY)):
427 0.5*(negCenY+posCenY))
431 """Calculate the orientation of dipole; vector from negative to positive lobe
436 The source that will be examined"""
438 negCenX = source.get("ip_diffim_PsfDipoleFlux_neg_centroid_x")
439 negCenY = source.get(
"ip_diffim_PsfDipoleFlux_neg_centroid_y")
440 posCenX = source.get(
"ip_diffim_PsfDipoleFlux_pos_centroid_x")
441 posCenY = source.get(
"ip_diffim_PsfDipoleFlux_pos_centroid_y")
442 if (np.isinf(negCenX)
or np.isinf(negCenY)
or np.isinf(posCenX)
or np.isinf(posCenY)):
445 dx, dy = posCenX-negCenX, posCenY-negCenY
446 angle =
geom.Angle(np.arctan2(dx, dy), geom.radians)
450 """Display debugging information on the detected dipoles
455 Image the dipoles were measured on
457 The set of diaSources that were measured"""
463 if not maskTransparency:
464 maskTransparency = 90
465 disp = afwDisplay.Display(frame=lsstDebug.frame)
466 disp.setMaskTransparency(maskTransparency)
469 if display
and displayDiaSources:
470 with disp.Buffering():
471 for source
in sources:
472 cenX, cenY = source.get(
"ipdiffim_DipolePsfFlux_centroid")
473 if np.isinf(cenX)
or np.isinf(cenY):
474 cenX, cenY = source.getCentroid()
476 isdipole = source.get(
"ip_diffim_ClassificationDipole_value")
477 if isdipole
and np.isfinite(isdipole):
479 ctype = afwDisplay.GREEN
482 ctype = afwDisplay.RED
484 disp.dot(
"o", cenX, cenY, size=2, ctype=ctype)
486 negCenX = source.get(
"ip_diffim_PsfDipoleFlux_neg_centroid_x")
487 negCenY = source.get(
"ip_diffim_PsfDipoleFlux_neg_centroid_y")
488 posCenX = source.get(
"ip_diffim_PsfDipoleFlux_pos_centroid_x")
489 posCenY = source.get(
"ip_diffim_PsfDipoleFlux_pos_centroid_y")
490 if (np.isinf(negCenX)
or np.isinf(negCenY)
or np.isinf(posCenX)
or np.isinf(posCenY)):
493 disp.line([(negCenX, negCenY), (posCenX, posCenY)], ctype=afwDisplay.YELLOW)
499 """Functor to deblend a source as a dipole, and return a new source with deblended footprints.
501 This necessarily overrides some of the functionality from
502 meas_algorithms/python/lsst/meas/algorithms/deblend.py since we
503 need a single source that contains the blended peaks,
not
504 multiple children sources. This directly calls the core
505 deblending code deblendBaseline.deblend (optionally _fitPsf
for
508 Not actively being used, but there
is a unit test
for it
in
521 fp = source.getFootprint()
522 peaks = fp.getPeaks()
523 peaksF = [pk.getF()
for pk
in peaks]
526 fmask.setXY0(fbb.getMinX(), fbb.getMinY())
527 fp.spans.setMask(fmask, 1)
529 psf = exposure.getPsf()
530 psfSigPix = psf.computeShape(psf.getAveragePosition()).getDeterminantRadius()
531 psfFwhmPix = psfSigPix * self.
sigma2fwhmsigma2fwhm
532 subimage = afwImage.ExposureF(exposure, bbox=fbb, deep=
True)
533 cpsf = deblendBaseline.CachingPsf(psf)
537 return source.getTable().copyRecord(source)
540 speaks = [(p.getPeakValue(), p)
for p
in peaks]
542 dpeaks = [speaks[0][1], speaks[-1][1]]
551 fpres = deblendBaseline.deblend(fp, exposure.getMaskedImage(), psf, psfFwhmPix,
560 fpres = deblendBaseline.DeblenderResult(fp, exposure.getMaskedImage(), psf, psfFwhmPix, self.
loglog)
562 for pki, (pk, pkres, pkF)
in enumerate(zip(dpeaks, fpres.deblendedParents[0].peaks, peaksF)):
564 deblendBaseline._fitPsf(fp, fmask, pk, pkF, pkres, fbb, dpeaks, peaksF, self.
loglog,
566 subimage.getMaskedImage().getImage(),
567 subimage.getMaskedImage().getVariance(),
570 deblendedSource = source.getTable().copyRecord(source)
571 deblendedSource.setParent(source.getId())
572 peakList = deblendedSource.getFootprint().getPeaks()
575 for i, peak
in enumerate(fpres.deblendedParents[0].peaks):
576 if peak.psfFitFlux > 0:
580 c = peak.psfFitCenter
581 self.
loglog.
info(
"deblended.centroid.dipole.psf.%s %f %f",
583 self.
loglog.
info(
"deblended.chi2dof.dipole.%s %f",
584 suffix, peak.psfFitChisq / peak.psfFitDof)
585 self.
loglog.
info(
"deblended.flux.dipole.psf.%s %f",
586 suffix, peak.psfFitFlux * np.sum(peak.templateImage.getArray()))
587 peakList.append(peak.peak)
588 return deblendedSource
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Represent a 2-dimensional array of bitmask pixels.
Record class that contains measurements made on a single exposure.
Class for storing ordered metadata with comments.
A class representing an angle.
def fail(self, measRecord, error=None)
def __init__(self, config, name, schema, metadata)
def getExecutionOrder(cls)
def measure(self, measRecord, exposure)
def displayDipoles(self, exposure, sources)
def __call__(self, source)
def getOrientation(self, source)
def getCentroid(self, source)
def __call__(self, source, exposure)
def __init__(self, sources, badFlags=None)
def __call__(self, source)
def fail(self, measRecord, error=None)
def run(self, measCat, exposure, noiseImage=None, exposureId=None, beginOrder=None, endOrder=None)
std::shared_ptr< FrameSet > append(FrameSet const &first, FrameSet const &second)
Construct a FrameSet that performs two transformations in series.
def mtv(data, frame=None, title="", wcs=None, *args, **kwargs)
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
def getLogger(loggername)