LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
imageMapReduce.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2016 AURA/LSST.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <https://www.lsstcorp.org/LegalNotices/>.
21#
22
23import numpy as np
24import abc
25
26import lsst.afw.image as afwImage
27import lsst.afw.table as afwTable
28import lsst.geom as geom
29import lsst.meas.algorithms as measAlg
30import lsst.pex.config as pexConfig
31import lsst.pipe.base as pipeBase
32from lsst.utils.timer import timeMethod
33
34__all__ = ("ImageMapReduceTask", "ImageMapReduceConfig",
35 "ImageMapper", "ImageMapperConfig",
36 "ImageReducer", "ImageReducerConfig")
37
38
39"""Tasks for processing an exposure via processing on
40multiple sub-exposures and then collecting the results
41to either re-stitch the sub-exposures back into a new
42exposure, or return summary results for each sub-exposure.
43
44This provides a framework for arbitrary mapper-reducer
45operations on an exposure by implementing simple operations in
46subTasks. It currently is not parallelized, although it could be in
47the future. It does enable operations such as spatially-mapped
48processing on a grid across an image, processing regions surrounding
49centroids (such as for PSF processing), etc.
50
51It is implemented as primary Task, `ImageMapReduceTask` which contains
52two subtasks, `ImageMapper` and `ImageReducer`.
53`ImageMapReduceTask` configures the centroids and sub-exposure
54dimensions to be processed, and then calls the `run` methods of the
55`ImageMapper` and `ImageReducer` on those sub-exposures.
56`ImageMapReduceTask` may be configured with a list of sub-exposure
57centroids (`config.cellCentroidsX` and `config.cellCentroidsY`) and a
58single pair of bounding boxes defining their dimensions, or a set of
59parameters defining a regular grid of centroids (`config.gridStepX`
60and `config.gridStepY`).
61
62`ImageMapper` is an abstract class and must be subclassed with
63an implemented `run` method to provide the desired operation for
64processing individual sub-exposures. It is called from
65`ImageMapReduceTask.run`, and may return a new, processed sub-exposure
66which is to be "stitched" back into a new resulting larger exposure
67(depending on the configured `ImageMapReduceTask.mapper`);
68otherwise if it does not return an lsst.afw.image.Exposure, then the results are
69passed back directly to the caller.
70
71`ImageReducer` will either stitch the `mapperResults` list of
72results generated by the `ImageMapper` together into a new
73Exposure (by default) or pass it through to the
74caller. `ImageReducer` has an implemented `run` method for
75basic reducing operations (`reduceOperation`) such as `average` (which
76will average all overlapping pixels from sub-exposures produced by the
77`ImageMapper` into the new exposure). Another notable
78implemented `reduceOperation` is 'none', in which case the
79`mapperResults` list is simply returned directly.
80"""
81
82
83class ImageMapperConfig(pexConfig.Config):
84 """Configuration parameters for ImageMapper
85 """
86 pass
87
88
89class ImageMapper(pipeBase.Task, metaclass=abc.ABCMeta):
90 """Abstract base class for any task that is to be
91 used as `ImageMapReduceConfig.mapper`.
92
93 Notes
94 -----
95 An `ImageMapper` is responsible for processing individual
96 sub-exposures in its `run` method, which is called from
97 `ImageMapReduceTask.run`. `run` may return a processed new
98 sub-exposure which can be be "stitched" back into a new resulting
99 larger exposure (depending on the configured
100 `ImageReducer`); otherwise if it does not return an
102 `ImageReducer.config.reducer.reduceOperation`
103 should be set to 'none' and the result will be propagated
104 as-is.
105 """
106 ConfigClass = ImageMapperConfig
107 _DefaultName = "ip_diffim_ImageMapper"
108
109 @abc.abstractmethod
110 def run(self, subExposure, expandedSubExposure, fullBBox, **kwargs):
111 """Perform operation on `subExposure`.
112
113 To be implemented by subclasses. See class docstring for more
114 details. This method is given the `subExposure` which
115 is to be operated upon, and an `expandedSubExposure` which
116 will contain `subExposure` with additional surrounding
117 pixels. This allows for, for example, convolutions (which
118 should be performed on `expandedSubExposure`), to prevent the
119 returned sub-exposure from containing invalid pixels.
120
121 This method may return a new, processed sub-exposure which can
122 be be "stitched" back into a new resulting larger exposure
123 (depending on the paired, configured `ImageReducer`);
124 otherwise if it does not return an lsst.afw.image.Exposure, then the
125 `ImageReducer.config.mapper.reduceOperation`
126 should be set to 'none' and the result will be propagated
127 as-is.
128
129 Parameters
130 ----------
131 subExposure : `lsst.afw.image.Exposure`
132 the sub-exposure upon which to operate
133 expandedSubExposure : `lsst.afw.image.Exposure`
134 the expanded sub-exposure upon which to operate
135 fullBBox : `lsst.geom.Box2I`
136 the bounding box of the original exposure
137 kwargs :
138 additional keyword arguments propagated from
139 `ImageMapReduceTask.run`.
140
141 Returns
142 -------
143 result : `lsst.pipe.base.Struct`
144 A structure containing the result of the `subExposure` processing,
145 which may itself be of any type. See above for details. If it is an
146 `lsst.afw.image.Exposure` (processed sub-exposure), then the name in
147 the Struct should be 'subExposure'. This is implemented here as a
148 pass-through example only.
149 """
150 return pipeBase.Struct(subExposure=subExposure)
151
152
153class ImageReducerConfig(pexConfig.Config):
154 """Configuration parameters for the ImageReducer
155 """
156 reduceOperation = pexConfig.ChoiceField(
157 dtype=str,
158 doc="""Operation to use for reducing subimages into new image.""",
159 default="average",
160 allowed={
161 "none": """simply return a list of values and don't re-map results into
162 a new image (noop operation)""",
163 "copy": """copy pixels directly from subimage into correct location in
164 new exposure (potentially non-deterministic for overlaps)""",
165 "sum": """add pixels from overlaps (probably never wanted; used for testing)
166 into correct location in new exposure""",
167 "average": """same as copy, but also average pixels from overlapped regions
168 (NaNs ignored)""",
169 "coaddPsf": """Instead of constructing an Exposure, take a list of returned
170 PSFs and use CoaddPsf to construct a single PSF that covers the
171 entire input exposure""",
172 }
173 )
174 badMaskPlanes = pexConfig.ListField(
175 dtype=str,
176 doc="""Mask planes to set for invalid pixels""",
177 default=('INVALID_MAPREDUCE', 'BAD', 'NO_DATA')
178 )
179
180
181class ImageReducer(pipeBase.Task):
182 """Base class for any 'reduce' task that is to be
183 used as `ImageMapReduceConfig.reducer`.
184
185 Basic reduce operations are provided by the `run` method
186 of this class, to be selected by its config.
187 """
188 ConfigClass = ImageReducerConfig
189 _DefaultName = "ip_diffim_ImageReducer"
190
191 def run(self, mapperResults, exposure, **kwargs):
192 """Reduce a list of items produced by `ImageMapper`.
193
194 Either stitch the passed `mapperResults` list
195 together into a new Exposure (default) or pass it through
196 (if `self.config.reduceOperation` is 'none').
197
198 If `self.config.reduceOperation` is not 'none', then expect
199 that the `pipeBase.Struct`s in the `mapperResults` list
200 contain sub-exposures named 'subExposure', to be stitched back
201 into a single Exposure with the same dimensions, PSF, and mask
202 as the input `exposure`. Otherwise, the `mapperResults` list
203 is simply returned directly.
204
205 Parameters
206 ----------
207 mapperResults : `list`
208 list of `lsst.pipe.base.Struct` returned by `ImageMapper.run`.
209 exposure : `lsst.afw.image.Exposure`
210 the original exposure which is cloned to use as the
211 basis for the resulting exposure (if
212 ``self.config.mapper.reduceOperation`` is not 'None')
213 kwargs :
214 additional keyword arguments propagated from
215 `ImageMapReduceTask.run`.
216
217 Returns
218 -------
219 A `lsst.pipe.base.Struct` containing either an `lsst.afw.image.Exposure`
220 (named 'exposure') or a list (named 'result'),
221 depending on `config.reduceOperation`.
222
223 Notes
224 -----
225 1. This currently correctly handles overlapping sub-exposures.
226 For overlapping sub-exposures, use `config.reduceOperation='average'`.
227 2. This correctly handles varying PSFs, constructing the resulting
228 exposure's PSF via CoaddPsf (DM-9629).
229
230 Known issues
231
232 1. To be done: correct handling of masks (nearly there)
233 2. This logic currently makes *two* copies of the original exposure
234 (one here and one in `mapper.run()`). Possibly of concern
235 for large images on memory-constrained systems.
236 """
237 # No-op; simply pass mapperResults directly to ImageMapReduceTask.run
238 if self.config.reduceOperation == 'none':
239 return pipeBase.Struct(result=mapperResults)
240
241 if self.config.reduceOperation == 'coaddPsf':
242 # Each element of `mapperResults` should contain 'psf' and 'bbox'
243 coaddPsf = self._constructPsf_constructPsf(mapperResults, exposure)
244 return pipeBase.Struct(result=coaddPsf)
245
246 newExp = exposure.clone()
247 newMI = newExp.getMaskedImage()
248
249 reduceOp = self.config.reduceOperation
250 if reduceOp == 'copy':
251 weights = None
252 newMI.getImage()[:, :] = np.nan
253 newMI.getVariance()[:, :] = np.nan
254 else:
255 newMI.getImage()[:, :] = 0.
256 newMI.getVariance()[:, :] = 0.
257 if reduceOp == 'average': # make an array to keep track of weights
258 weights = afwImage.ImageI(newMI.getBBox())
259
260 for item in mapperResults:
261 item = item.subExposure # Expected named value in the pipeBase.Struct
262 if not (isinstance(item, afwImage.ExposureF) or isinstance(item, afwImage.ExposureI)
263 or isinstance(item, afwImage.ExposureU) or isinstance(item, afwImage.ExposureD)):
264 raise TypeError("""Expecting an Exposure type, got %s.
265 Consider using `reduceOperation="none".""" % str(type(item)))
266 subExp = newExp.Factory(newExp, item.getBBox())
267 subMI = subExp.getMaskedImage()
268 patchMI = item.getMaskedImage()
269 isValid = ~np.isnan(patchMI.getImage().getArray() * patchMI.getVariance().getArray())
270
271 if reduceOp == 'copy':
272 subMI.getImage().getArray()[isValid] = patchMI.getImage().getArray()[isValid]
273 subMI.getVariance().getArray()[isValid] = patchMI.getVariance().getArray()[isValid]
274 subMI.getMask().getArray()[:, :] |= patchMI.getMask().getArray()
275
276 if reduceOp == 'sum' or reduceOp == 'average': # much of these two options is the same
277 subMI.getImage().getArray()[isValid] += patchMI.getImage().getArray()[isValid]
278 subMI.getVariance().getArray()[isValid] += patchMI.getVariance().getArray()[isValid]
279 subMI.getMask().getArray()[:, :] |= patchMI.getMask().getArray()
280 if reduceOp == 'average':
281 # wtsView is a view into the `weights` Image
282 wtsView = afwImage.ImageI(weights, item.getBBox())
283 wtsView.getArray()[isValid] += 1
284
285 # New mask plane - for debugging map-reduced images
286 mask = newMI.getMask()
287 for m in self.config.badMaskPlanes:
288 mask.addMaskPlane(m)
289 bad = mask.getPlaneBitMask(self.config.badMaskPlanes)
290
291 isNan = np.where(np.isnan(newMI.getImage().getArray() * newMI.getVariance().getArray()))
292 if len(isNan[0]) > 0:
293 # set mask to INVALID for pixels where produced exposure is NaN
294 mask.getArray()[isNan[0], isNan[1]] |= bad
295
296 if reduceOp == 'average':
297 wts = weights.getArray().astype(float)
298 self.log.info('AVERAGE: Maximum overlap: %f', np.nanmax(wts))
299 self.log.info('AVERAGE: Average overlap: %f', np.nanmean(wts))
300 self.log.info('AVERAGE: Minimum overlap: %f', np.nanmin(wts))
301 wtsZero = np.equal(wts, 0.)
302 wtsZeroInds = np.where(wtsZero)
303 wtsZeroSum = len(wtsZeroInds[0])
304 self.log.info('AVERAGE: Number of zero pixels: %f (%f%%)', wtsZeroSum,
305 wtsZeroSum * 100. / wtsZero.size)
306 notWtsZero = ~wtsZero
307 tmp = newMI.getImage().getArray()
308 np.divide(tmp, wts, out=tmp, where=notWtsZero)
309 tmp = newMI.getVariance().getArray()
310 np.divide(tmp, wts, out=tmp, where=notWtsZero)
311 if len(wtsZeroInds[0]) > 0:
312 newMI.getImage().getArray()[wtsZeroInds] = np.nan
313 newMI.getVariance().getArray()[wtsZeroInds] = np.nan
314 # set mask to something for pixels where wts == 0.
315 # happens sometimes if operation failed on a certain subexposure
316 mask.getArray()[wtsZeroInds] |= bad
317
318 # Not sure how to construct a PSF when reduceOp=='copy'...
319 if reduceOp == 'sum' or reduceOp == 'average':
320 psf = self._constructPsf_constructPsf(mapperResults, exposure)
321 newExp.setPsf(psf)
322
323 return pipeBase.Struct(exposure=newExp)
324
325 def _constructPsf(self, mapperResults, exposure):
326 """Construct a CoaddPsf based on PSFs from individual subExposures
327
328 Currently uses (and returns) a CoaddPsf. TBD if we want to
329 create a custom subclass of CoaddPsf to differentiate it.
330
331 Parameters
332 ----------
333 mapperResults : `list`
334 list of `pipeBase.Struct` returned by `ImageMapper.run`.
335 For this to work, each element of `mapperResults` must contain
336 a `subExposure` element, from which the component Psfs are
337 extracted (thus the reducerTask cannot have
338 `reduceOperation = 'none'`.
339 exposure : `lsst.afw.image.Exposure`
340 the original exposure which is used here solely for its
341 bounding-box and WCS.
342
343 Returns
344 -------
346 A psf constructed from the PSFs of the individual subExposures.
347 """
348 schema = afwTable.ExposureTable.makeMinimalSchema()
349 schema.addField("weight", type="D", doc="Coadd weight")
350 mycatalog = afwTable.ExposureCatalog(schema)
351
352 # We're just using the exposure's WCS (assuming that the subExposures'
353 # WCSs are the same, which they better be!).
354 wcsref = exposure.getWcs()
355 for i, res in enumerate(mapperResults):
356 record = mycatalog.getTable().makeRecord()
357 if 'subExposure' in res.getDict():
358 subExp = res.subExposure
359 if subExp.getWcs() != wcsref:
360 raise ValueError('Wcs of subExposure is different from exposure')
361 record.setPsf(subExp.getPsf())
362 record.setWcs(subExp.getWcs())
363 record.setBBox(subExp.getBBox())
364 elif 'psf' in res.getDict():
365 record.setPsf(res.psf)
366 record.setWcs(wcsref)
367 record.setBBox(res.bbox)
368 record['weight'] = 1.0
369 record['id'] = i
370 mycatalog.append(record)
371
372 # create the coaddpsf
373 psf = measAlg.CoaddPsf(mycatalog, wcsref, 'weight')
374 return psf
375
376
377class ImageMapReduceConfig(pexConfig.Config):
378 """Configuration parameters for the ImageMapReduceTask
379 """
380 mapper = pexConfig.ConfigurableField(
381 doc="Task to run on each subimage",
382 target=ImageMapper,
383 )
384
385 reducer = pexConfig.ConfigurableField(
386 doc="Task to combine results of mapper task",
387 target=ImageReducer,
388 )
389
390 # Separate cellCentroidsX and cellCentroidsY since pexConfig.ListField accepts limited dtypes
391 # (i.e., no Point2D). The resulting set of centroids is the "vertical stack" of
392 # `cellCentroidsX` and `cellCentroidsY`, i.e. for (1,2), (3,4) respectively, the
393 # resulting centroids are ((1,3), (2,4)).
394 cellCentroidsX = pexConfig.ListField(
395 dtype=float,
396 doc="""Input X centroids around which to place subimages.
397 If None, use grid config options below.""",
398 optional=True,
399 default=None
400 )
401
402 cellCentroidsY = pexConfig.ListField(
403 dtype=float,
404 doc="""Input Y centroids around which to place subimages.
405 If None, use grid config options below.""",
406 optional=True,
407 default=None
408 )
409
410 cellSizeX = pexConfig.Field(
411 dtype=float,
412 doc="""Dimensions of each grid cell in x direction""",
413 default=10.,
414 check=lambda x: x > 0.
415 )
416
417 cellSizeY = pexConfig.Field(
418 dtype=float,
419 doc="""Dimensions of each grid cell in y direction""",
420 default=10.,
421 check=lambda x: x > 0.
422 )
423
424 gridStepX = pexConfig.Field(
425 dtype=float,
426 doc="""Spacing between subsequent grid cells in x direction. If equal to
427 cellSizeX, then there is no overlap in the x direction.""",
428 default=10.,
429 check=lambda x: x > 0.
430 )
431
432 gridStepY = pexConfig.Field(
433 dtype=float,
434 doc="""Spacing between subsequent grid cells in y direction. If equal to
435 cellSizeY, then there is no overlap in the y direction.""",
436 default=10.,
437 check=lambda x: x > 0.
438 )
439
440 borderSizeX = pexConfig.Field(
441 dtype=float,
442 doc="""Dimensions of grid cell border in +/- x direction, to be used
443 for generating `expandedSubExposure`.""",
444 default=5.,
445 check=lambda x: x > 0.
446 )
447
448 borderSizeY = pexConfig.Field(
449 dtype=float,
450 doc="""Dimensions of grid cell border in +/- y direction, to be used
451 for generating `expandedSubExposure`.""",
452 default=5.,
453 check=lambda x: x > 0.
454 )
455
456 adjustGridOption = pexConfig.ChoiceField(
457 dtype=str,
458 doc="""Whether and how to adjust grid to fit evenly within, and cover entire
459 image""",
460 default="spacing",
461 allowed={
462 "spacing": "adjust spacing between centers of grid cells (allowing overlaps)",
463 "size": "adjust the sizes of the grid cells (disallowing overlaps)",
464 "none": "do not adjust the grid sizes or spacing"
465 }
466 )
467
468 scaleByFwhm = pexConfig.Field(
469 dtype=bool,
470 doc="""Scale cellSize/gridStep/borderSize/overlapSize by PSF FWHM rather
471 than pixels?""",
472 default=True
473 )
474
475 returnSubImages = pexConfig.Field(
476 dtype=bool,
477 doc="""Return the input subExposures alongside the processed ones (for debugging)""",
478 default=False
479 )
480
481 ignoreMaskPlanes = pexConfig.ListField(
482 dtype=str,
483 doc="""Mask planes to ignore for sigma-clipped statistics""",
484 default=("INTRP", "EDGE", "DETECTED", "SAT", "CR", "BAD", "NO_DATA", "DETECTED_NEGATIVE")
485 )
486
487
488class ImageMapReduceTask(pipeBase.Task):
489 """Split an Exposure into subExposures (optionally on a grid) and
490 perform the same operation on each.
491
492 Perform 'simple' operations on a gridded set of subExposures of a
493 larger Exposure, and then (by default) have those subExposures
494 stitched back together into a new, full-sized image.
495
496 Contrary to the expectation given by its name, this task does not
497 perform these operations in parallel, although it could be updatd
498 to provide such functionality.
499
500 The actual operations are performed by two subTasks passed to the
501 config. The exposure passed to this task's `run` method will be
502 divided, and those subExposures will be passed to the subTasks,
503 along with the original exposure. The reducing operation is
504 performed by the second subtask.
505 """
506 ConfigClass = ImageMapReduceConfig
507 _DefaultName = "ip_diffim_imageMapReduce"
508
509 def __init__(self, *args, **kwargs):
510 """Create the image map-reduce task
511
512 Parameters
513 ----------
514 args :
515 arguments to be passed to
516 `lsst.pipe.base.task.Task.__init__`
517 kwargs :
518 additional keyword arguments to be passed to
519 `lsst.pipe.base.task.Task.__init__`
520 """
521 pipeBase.Task.__init__(self, *args, **kwargs)
522
523 self.boxes0boxes0 = self.boxes1boxes1 = None
524 self.makeSubtask("mapper")
525 self.makeSubtask("reducer")
526
527 @timeMethod
528 def run(self, exposure, **kwargs):
529 """Perform a map-reduce operation on the given exposure.
530
531 Split the exposure into sub-expposures on a grid (parameters
532 given by `ImageMapReduceConfig`) and perform
533 `config.mapper.run()` on each. Reduce the resulting
534 sub-exposures by running `config.reducer.run()`.
535
536 Parameters
537 ----------
538 exposure : `lsst.afw.image.Exposure`
539 the full exposure to process
540 kwargs :
541 additional keyword arguments to be passed to
542 subtask `run` methods
543
544 Returns
545 -------
546 output of `reducer.run()`
547
548 """
549 self.log.info("Mapper sub-task: %s", self.mapper._DefaultName)
550 mapperResults = self._runMapper_runMapper(exposure, **kwargs)
551 self.log.info("Reducer sub-task: %s", self.reducer._DefaultName)
552 result = self._reduceImage_reduceImage(mapperResults, exposure, **kwargs)
553 return result
554
555 def _runMapper(self, exposure, doClone=False, **kwargs):
556 """Perform `mapper.run` on each sub-exposure
557
558 Perform `mapper.run` on each sub-exposure across a
559 grid on `exposure` generated by `_generateGrid`. Also pass to
560 `mapper.run` an 'expanded sub-exposure' containing the
561 same region as the sub-exposure but with an expanded bounding box.
562
563 Parameters
564 ----------
565 exposure : `lsst.afw.image.Exposure`
566 the original exposure which is used as the template
567 doClone : `bool`
568 if True, clone the subimages before passing to subtask;
569 in that case, the sub-exps do not have to be considered as read-only
570 kwargs :
571 additional keyword arguments to be passed to
572 `mapper.run` and `self._generateGrid_generateGrid`, including `forceEvenSized`.
573
574 Returns
575 -------
576 a list of `pipeBase.Struct`s as returned by `mapper.run`.
577 """
578 if self.boxes0boxes0 is None:
579 self._generateGrid_generateGrid(exposure, **kwargs) # possibly pass `forceEvenSized`
580 if len(self.boxes0boxes0) != len(self.boxes1boxes1):
581 raise ValueError('Bounding boxes list and expanded bounding boxes list are of different lengths')
582
583 self.log.info("Processing %d sub-exposures", len(self.boxes0boxes0))
584 mapperResults = []
585 for box0, box1 in zip(self.boxes0boxes0, self.boxes1boxes1):
586 subExp = exposure.Factory(exposure, box0)
587 expandedSubExp = exposure.Factory(exposure, box1)
588 if doClone:
589 subExp = subExp.clone()
590 expandedSubExp = expandedSubExp.clone()
591 result = self.mapper.run(subExp, expandedSubExp, exposure.getBBox(), **kwargs)
592 if self.config.returnSubImages:
593 toAdd = pipeBase.Struct(inputSubExposure=subExp,
594 inputExpandedSubExposure=expandedSubExp)
595 result.mergeItems(toAdd, 'inputSubExposure', 'inputExpandedSubExposure')
596 mapperResults.append(result)
597
598 return mapperResults
599
600 def _reduceImage(self, mapperResults, exposure, **kwargs):
601 """Reduce/merge a set of sub-exposures into a final result
602
603 Return an exposure of the same dimensions as `exposure`.
604 `mapperResults` is expected to have been produced by `runMapper`.
605
606 Parameters
607 ----------
608 mapperResults : `list`
609 `list` of `lsst.pipe.base.Struct`, each of which was produced by
610 `config.mapper`
611 exposure : `lsst.afw.image.Exposure`
612 the original exposure
613 **kwargs
614 additional keyword arguments
615
616 Returns
617 -------
618 Output of `reducer.run` which is a `pipeBase.Struct`.
619 """
620 result = self.reducer.run(mapperResults, exposure, **kwargs)
621 return result
622
623 def _generateGrid(self, exposure, forceEvenSized=False, **kwargs):
624 """Generate two lists of bounding boxes that evenly grid `exposure`
625
626 Unless the config was provided with `cellCentroidsX` and
627 `cellCentroidsY`, grid (subimage) centers are spaced evenly
628 by gridStepX/Y. Then the grid is adjusted as little as
629 possible to evenly cover the input exposure (if
630 adjustGridOption is not 'none'). Then the second set of
631 bounding boxes is expanded by borderSizeX/Y. The expanded
632 bounding boxes are adjusted to ensure that they intersect the
633 exposure's bounding box. The resulting lists of bounding boxes
634 and corresponding expanded bounding boxes are set to
635 `self.boxes0boxes0`, `self.boxes1boxes1`.
636
637 Parameters
638 ----------
639 exposure : `lsst.afw.image.Exposure`
640 input exposure whose full bounding box is to be evenly gridded.
641 forceEvenSized : `bool`
642 force grid elements to have even-valued x- and y- dimensions?
643 (Potentially useful if doing Fourier transform of subExposures.)
644 """
645 # kwargs are ignored, but necessary to enable optional passing of
646 # `forceEvenSized` from `_runMapper`.
647 bbox = exposure.getBBox()
648
649 # Extract the config parameters for conciseness.
650 cellCentroidsX = self.config.cellCentroidsX
651 cellCentroidsY = self.config.cellCentroidsY
652 cellSizeX = self.config.cellSizeX
653 cellSizeY = self.config.cellSizeY
654 gridStepX = self.config.gridStepX
655 gridStepY = self.config.gridStepY
656 borderSizeX = self.config.borderSizeX
657 borderSizeY = self.config.borderSizeY
658 adjustGridOption = self.config.adjustGridOption
659 scaleByFwhm = self.config.scaleByFwhm
660
661 if cellCentroidsX is None or len(cellCentroidsX) <= 0:
662 # Not given centroids; construct them from cellSize/gridStep
663 psf = exposure.getPsf()
664 psfFwhm = (psf.computeShape(psf.getAveragePosition()).getDeterminantRadius()
665 * 2.*np.sqrt(2.*np.log(2.)))
666 if scaleByFwhm:
667 self.log.info("Scaling grid parameters by %f", psfFwhm)
668
669 def rescaleValue(val):
670 if scaleByFwhm:
671 return np.rint(val*psfFwhm).astype(int)
672 else:
673 return np.rint(val).astype(int)
674
675 cellSizeX = rescaleValue(cellSizeX)
676 cellSizeY = rescaleValue(cellSizeY)
677 gridStepX = rescaleValue(gridStepX)
678 gridStepY = rescaleValue(gridStepY)
679 borderSizeX = rescaleValue(borderSizeX)
680 borderSizeY = rescaleValue(borderSizeY)
681
682 nGridX = bbox.getWidth()//gridStepX
683 nGridY = bbox.getHeight()//gridStepY
684
685 if adjustGridOption == 'spacing':
686 # Readjust spacings so that they fit perfectly in the image.
687 nGridX = bbox.getWidth()//cellSizeX + 1
688 nGridY = bbox.getHeight()//cellSizeY + 1
689 xLinSpace = np.linspace(cellSizeX//2, bbox.getWidth() - cellSizeX//2, nGridX)
690 yLinSpace = np.linspace(cellSizeY//2, bbox.getHeight() - cellSizeY//2, nGridY)
691
692 elif adjustGridOption == 'size':
693 cellSizeX = gridStepX
694 cellSizeY = gridStepY
695 xLinSpace = np.arange(cellSizeX//2, bbox.getWidth() + cellSizeX//2, cellSizeX)
696 yLinSpace = np.arange(cellSizeY//2, bbox.getHeight() + cellSizeY//2, cellSizeY)
697 cellSizeX += 1 # add 1 to make sure there are no gaps
698 cellSizeY += 1
699
700 else:
701 xLinSpace = np.arange(cellSizeX//2, bbox.getWidth() + cellSizeX//2, gridStepX)
702 yLinSpace = np.arange(cellSizeY//2, bbox.getHeight() + cellSizeY//2, gridStepY)
703
704 cellCentroids = [(x, y) for x in xLinSpace for y in yLinSpace]
705
706 else:
707 # in py3 zip returns an iterator, but want to test length below, so use this instead:
708 cellCentroids = [(cellCentroidsX[i], cellCentroidsY[i]) for i in range(len(cellCentroidsX))]
709
710 # first "main" box at 0,0
711 bbox0 = geom.Box2I(geom.Point2I(bbox.getBegin()), geom.Extent2I(cellSizeX, cellSizeY))
712 # first expanded box
713 bbox1 = geom.Box2I(bbox0)
714 bbox1.grow(geom.Extent2I(borderSizeX, borderSizeY))
715
716 self.boxes0boxes0 = [] # "main" boxes; store in task so can be extracted if needed
717 self.boxes1boxes1 = [] # "expanded" boxes
718
719 def _makeBoxEvenSized(bb):
720 """Force a bounding-box to have dimensions that are modulo 2."""
721
722 if bb.getWidth() % 2 == 1: # grow to the right
723 bb.include(geom.Point2I(bb.getMaxX()+1, bb.getMaxY())) # Expand by 1 pixel!
724 bb.clip(bbox)
725 if bb.getWidth() % 2 == 1: # clipped at right -- so grow to the left
726 bb.include(geom.Point2I(bb.getMinX()-1, bb.getMaxY()))
727 bb.clip(bbox)
728 if bb.getHeight() % 2 == 1: # grow upwards
729 bb.include(geom.Point2I(bb.getMaxX(), bb.getMaxY()+1)) # Expand by 1 pixel!
730 bb.clip(bbox)
731 if bb.getHeight() % 2 == 1: # clipped upwards -- so grow down
732 bb.include(geom.Point2I(bb.getMaxX(), bb.getMinY()-1))
733 bb.clip(bbox)
734 if bb.getWidth() % 2 == 1 or bb.getHeight() % 2 == 1: # Box is probably too big
735 raise RuntimeError('Cannot make bounding box even-sized. Probably too big.')
736
737 return bb
738
739 # Use given or grid-parameterized centroids as centers for bounding boxes
740 if cellCentroids is not None and len(cellCentroids) > 0:
741 for x, y in cellCentroids:
742 centroid = geom.Point2D(x, y)
743 bb0 = geom.Box2I(bbox0)
744 xoff = int(np.floor(centroid.getX())) - bb0.getWidth()//2
745 yoff = int(np.floor(centroid.getY())) - bb0.getHeight()//2
746 bb0.shift(geom.Extent2I(xoff, yoff))
747 bb0.clip(bbox)
748 if forceEvenSized:
749 bb0 = _makeBoxEvenSized(bb0)
750 bb1 = geom.Box2I(bbox1)
751 bb1.shift(geom.Extent2I(xoff, yoff))
752 bb1.clip(bbox)
753 if forceEvenSized:
754 bb1 = _makeBoxEvenSized(bb1)
755
756 if bb0.getArea() > 1 and bb1.getArea() > 1:
757 self.boxes0boxes0.append(bb0)
758 self.boxes1boxes1.append(bb1)
759
760 return self.boxes0boxes0, self.boxes1boxes1
761
762 def plotBoxes(self, fullBBox, skip=3):
763 """Plot both grids of boxes using matplotlib.
764
765 Will compute the grid via `_generateGrid` if
766 `self.boxes0boxes0` and `self.boxes1boxes1` have not already been set.
767
768 Parameters
769 ----------
770 exposure : `lsst.afw.image.Exposure`
771 Exposure whose bounding box is gridded by this task.
772 skip : `int`
773 Plot every skip-ped box (help make plots less confusing)
774 """
775 import matplotlib.pyplot as plt
776
777 if self.boxes0boxes0 is None:
778 raise RuntimeError('Cannot plot boxes. Run _generateGrid first.')
779 self._plotBoxGrid_plotBoxGrid(self.boxes0boxes0[::skip], fullBBox, ls='--')
780 # reset the color cycle -- see
781 # http://stackoverflow.com/questions/24193174/reset-color-cycle-in-matplotlib
782 plt.gca().set_prop_cycle(None)
783 self._plotBoxGrid_plotBoxGrid(self.boxes1boxes1[::skip], fullBBox, ls=':')
784
785 def _plotBoxGrid(self, boxes, bbox, **kwargs):
786 """Plot a grid of boxes using matplotlib.
787
788 Parameters
789 ----------
790 boxes : `list` of `lsst.geom.Box2I`
791 a list of bounding boxes.
792 bbox : `lsst.geom.Box2I`
793 an overall bounding box
794 **kwargs
795 additional keyword arguments for matplotlib
796 """
797 import matplotlib.pyplot as plt
798
799 def plotBox(box):
800 corners = np.array([np.array([pt.getX(), pt.getY()]) for pt in box.getCorners()])
801 corners = np.vstack([corners, corners[0, :]])
802 plt.plot(corners[:, 0], corners[:, 1], **kwargs)
803
804 for b in boxes:
805 plotBox(b)
806 plt.xlim(bbox.getBeginX(), bbox.getEndX())
807 plt.ylim(bbox.getBeginY(), bbox.getEndY())
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition: Exposure.h:72
Custom catalog class for ExposureRecord/Table.
Definition: Exposure.h:311
An integer coordinate rectangle.
Definition: Box.h:55
def _runMapper(self, exposure, doClone=False, **kwargs)
def _generateGrid(self, exposure, forceEvenSized=False, **kwargs)
def _reduceImage(self, mapperResults, exposure, **kwargs)
def _plotBoxGrid(self, boxes, bbox, **kwargs)
def run(self, subExposure, expandedSubExposure, fullBBox, **kwargs)
def _constructPsf(self, mapperResults, exposure)
def run(self, mapperResults, exposure, **kwargs)
CoaddPsf is the Psf derived to be used for non-PSF-matched Coadd images.
Definition: CoaddPsf.h:58
std::shared_ptr< FrameSet > append(FrameSet const &first, FrameSet const &second)
Construct a FrameSet that performs two transformations in series.
Definition: functional.cc:33
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
Fit spatial kernel using approximate fluxes for candidates, and solving a linear system of equations.