LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
insertFakes.py
Go to the documentation of this file.
1# This file is part of pipe tasks
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22"""
23Insert fakes into deepCoadds
24"""
25import galsim
26from astropy.table import Table
27import numpy as np
28from astropy import units as u
29
30import lsst.geom as geom
31import lsst.afw.image as afwImage
32import lsst.afw.math as afwMath
33import lsst.pex.config as pexConfig
34import lsst.pipe.base as pipeBase
35
36from lsst.pipe.base import CmdLineTask, PipelineTask, PipelineTaskConfig, PipelineTaskConnections
37import lsst.pipe.base.connectionTypes as cT
38from lsst.pex.exceptions import LogicError, InvalidParameterError
39from lsst.coadd.utils.coaddDataIdContainer import ExistingCoaddDataIdContainer
40from lsst.geom import SpherePoint, radians, Box2D, Point2D
41
42__all__ = ["InsertFakesConfig", "InsertFakesTask"]
43
44
45def _add_fake_sources(exposure, objects, calibFluxRadius=12.0, logger=None):
46 """Add fake sources to the given exposure
47
48 Parameters
49 ----------
50 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
51 The exposure into which the fake sources should be added
52 objects : `typing.Iterator` [`tuple` ['lsst.geom.SpherePoint`, `galsim.GSObject`]]
53 An iterator of tuples that contains (or generates) locations and object
54 surface brightness profiles to inject.
55 calibFluxRadius : `float`, optional
56 Aperture radius (in pixels) used to define the calibration for this
57 exposure+catalog. This is used to produce the correct instrumental fluxes
58 within the radius. The value should match that of the field defined in
59 slot_CalibFlux_instFlux.
60 logger : `lsst.log.log.log.Log` or `logging.Logger`, optional
61 Logger.
62 """
63 exposure.mask.addMaskPlane("FAKE")
64 bitmask = exposure.mask.getPlaneBitMask("FAKE")
65 if logger:
66 logger.info(f"Adding mask plane with bitmask {bitmask}")
67
68 wcs = exposure.getWcs()
69 psf = exposure.getPsf()
70
71 bbox = exposure.getBBox()
72 fullBounds = galsim.BoundsI(bbox.minX, bbox.maxX, bbox.minY, bbox.maxY)
73 gsImg = galsim.Image(exposure.image.array, bounds=fullBounds)
74
75 pixScale = wcs.getPixelScale(bbox.getCenter()).asArcseconds()
76
77 for spt, gsObj in objects:
78 pt = wcs.skyToPixel(spt)
79 posd = galsim.PositionD(pt.x, pt.y)
80 posi = galsim.PositionI(pt.x//1, pt.y//1)
81 if logger:
82 logger.debug(f"Adding fake source at {pt}")
83
84 mat = wcs.linearizePixelToSky(spt, geom.arcseconds).getMatrix()
85 gsWCS = galsim.JacobianWCS(mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1])
86
87 # This check is here because sometimes the WCS
88 # is multivalued and objects that should not be
89 # were being included.
90 gsPixScale = np.sqrt(gsWCS.pixelArea())
91 if gsPixScale < pixScale/2 or gsPixScale > pixScale*2:
92 continue
93
94 try:
95 psfArr = psf.computeKernelImage(pt).array
96 except InvalidParameterError:
97 # Try mapping to nearest point contained in bbox.
98 contained_pt = Point2D(
99 np.clip(pt.x, bbox.minX, bbox.maxX),
100 np.clip(pt.y, bbox.minY, bbox.maxY)
101 )
102 if pt == contained_pt: # no difference, so skip immediately
103 if logger:
104 logger.infof(
105 "Cannot compute Psf for object at {}; skipping",
106 pt
107 )
108 continue
109 # otherwise, try again with new point
110 try:
111 psfArr = psf.computeKernelImage(contained_pt).array
112 except InvalidParameterError:
113 if logger:
114 logger.infof(
115 "Cannot compute Psf for object at {}; skipping",
116 pt
117 )
118 continue
119
120 apCorr = psf.computeApertureFlux(calibFluxRadius)
121 psfArr /= apCorr
122 gsPSF = galsim.InterpolatedImage(galsim.Image(psfArr), wcs=gsWCS)
123
124 conv = galsim.Convolve(gsObj, gsPSF)
125 stampSize = conv.getGoodImageSize(gsWCS.minLinearScale())
126 subBounds = galsim.BoundsI(posi).withBorder(stampSize//2)
127 subBounds &= fullBounds
128
129 if subBounds.area() > 0:
130 subImg = gsImg[subBounds]
131 offset = posd - subBounds.true_center
132 # Note, for calexp injection, pixel is already part of the PSF and
133 # for coadd injection, it's incorrect to include the output pixel.
134 # So for both cases, we draw using method='no_pixel'.
135
136 conv.drawImage(
137 subImg,
138 add_to_image=True,
139 offset=offset,
140 wcs=gsWCS,
141 method='no_pixel'
142 )
143
144 subBox = geom.Box2I(
145 geom.Point2I(subBounds.xmin, subBounds.ymin),
146 geom.Point2I(subBounds.xmax, subBounds.ymax)
147 )
148 exposure[subBox].mask.array |= bitmask
149
150
151def _isWCSGalsimDefault(wcs, hdr):
152 """Decide if wcs = galsim.PixelScale(1.0) is explicitly present in header,
153 or if it's just the galsim default.
154
155 Parameters
156 ----------
157 wcs : galsim.BaseWCS
158 Potentially default WCS.
159 hdr : galsim.fits.FitsHeader
160 Header as read in by galsim.
161
162 Returns
163 -------
164 isDefault : bool
165 True if default, False if explicitly set in header.
166 """
167 if wcs != galsim.PixelScale(1.0):
168 return False
169 if hdr.get('GS_WCS') is not None:
170 return False
171 if hdr.get('CTYPE1', 'LINEAR') == 'LINEAR':
172 return not any(k in hdr for k in ['CD1_1', 'CDELT1'])
173 for wcs_type in galsim.fitswcs.fits_wcs_types:
174 # If one of these succeeds, then assume result is explicit
175 try:
176 wcs_type._readHeader(hdr)
177 return False
178 except Exception:
179 pass
180 else:
181 return not any(k in hdr for k in ['CD1_1', 'CDELT1'])
182
183
184class InsertFakesConnections(PipelineTaskConnections,
185 defaultTemplates={"coaddName": "deep",
186 "fakesType": "fakes_"},
187 dimensions=("tract", "patch", "band", "skymap")):
188
189 image = cT.Input(
190 doc="Image into which fakes are to be added.",
191 name="{coaddName}Coadd",
192 storageClass="ExposureF",
193 dimensions=("tract", "patch", "band", "skymap")
194 )
195
196 fakeCat = cT.Input(
197 doc="Catalog of fake sources to draw inputs from.",
198 name="{fakesType}fakeSourceCat",
199 storageClass="DataFrame",
200 dimensions=("tract", "skymap")
201 )
202
203 imageWithFakes = cT.Output(
204 doc="Image with fake sources added.",
205 name="{fakesType}{coaddName}Coadd",
206 storageClass="ExposureF",
207 dimensions=("tract", "patch", "band", "skymap")
208 )
209
210
211class InsertFakesConfig(PipelineTaskConfig,
212 pipelineConnections=InsertFakesConnections):
213 """Config for inserting fake sources
214 """
215
216 # Unchanged
217
218 doCleanCat = pexConfig.Field(
219 doc="If true removes bad sources from the catalog.",
220 dtype=bool,
221 default=True,
222 )
223
224 fakeType = pexConfig.Field(
225 doc="What type of fake catalog to use, snapshot (includes variability in the magnitudes calculated "
226 "from the MJD of the image), static (no variability) or filename for a user defined fits"
227 "catalog.",
228 dtype=str,
229 default="static",
230 )
231
232 calibFluxRadius = pexConfig.Field(
233 doc="Aperture radius (in pixels) that was used to define the calibration for this image+catalog. "
234 "This will be used to produce the correct instrumental fluxes within the radius. "
235 "This value should match that of the field defined in slot_CalibFlux_instFlux.",
236 dtype=float,
237 default=12.0,
238 )
239
240 coaddName = pexConfig.Field(
241 doc="The name of the type of coadd used",
242 dtype=str,
243 default="deep",
244 )
245
246 doSubSelectSources = pexConfig.Field(
247 doc="Set to True if you wish to sub select sources to be input based on the value in the column"
248 "set in the sourceSelectionColName config option.",
249 dtype=bool,
250 default=False
251 )
252
253 insertImages = pexConfig.Field(
254 doc="Insert images directly? True or False.",
255 dtype=bool,
256 default=False,
257 )
258
259 insertOnlyStars = pexConfig.Field(
260 doc="Insert only stars? True or False.",
261 dtype=bool,
262 default=False,
263 )
264
265 doProcessAllDataIds = pexConfig.Field(
266 doc="If True, all input data IDs will be processed, even those containing no fake sources.",
267 dtype=bool,
268 default=False,
269 )
270
271 trimBuffer = pexConfig.Field(
272 doc="Size of the pixel buffer surrounding the image. Only those fake sources with a centroid"
273 "falling within the image+buffer region will be considered for fake source injection.",
274 dtype=int,
275 default=100,
276 )
277
278 sourceType = pexConfig.Field(
279 doc="The column name for the source type used in the fake source catalog.",
280 dtype=str,
281 default="sourceType",
282 )
283
284 fits_alignment = pexConfig.ChoiceField(
285 doc="How should injections from FITS files be aligned?",
286 dtype=str,
287 allowed={
288 "wcs": (
289 "Input image will be transformed such that the local WCS in "
290 "the FITS header matches the local WCS in the target image. "
291 "I.e., North, East, and angular distances in the input image "
292 "will match North, East, and angular distances in the target "
293 "image."
294 ),
295 "pixel": (
296 "Input image will _not_ be transformed. Up, right, and pixel "
297 "distances in the input image will match up, right and pixel "
298 "distances in the target image."
299 )
300 },
301 default="pixel"
302 )
303
304 # New source catalog config variables
305
306 ra_col = pexConfig.Field(
307 doc="Source catalog column name for RA (in radians).",
308 dtype=str,
309 default="ra",
310 )
311
312 dec_col = pexConfig.Field(
313 doc="Source catalog column name for dec (in radians).",
314 dtype=str,
315 default="dec",
316 )
317
318 bulge_semimajor_col = pexConfig.Field(
319 doc="Source catalog column name for the semimajor axis (in arcseconds) "
320 "of the bulge half-light ellipse.",
321 dtype=str,
322 default="bulge_semimajor",
323 )
324
325 bulge_axis_ratio_col = pexConfig.Field(
326 doc="Source catalog column name for the axis ratio of the bulge "
327 "half-light ellipse.",
328 dtype=str,
329 default="bulge_axis_ratio",
330 )
331
332 bulge_pa_col = pexConfig.Field(
333 doc="Source catalog column name for the position angle (measured from "
334 "North through East in degrees) of the semimajor axis of the bulge "
335 "half-light ellipse.",
336 dtype=str,
337 default="bulge_pa",
338 )
339
340 bulge_n_col = pexConfig.Field(
341 doc="Source catalog column name for the Sersic index of the bulge.",
342 dtype=str,
343 default="bulge_n",
344 )
345
346 disk_semimajor_col = pexConfig.Field(
347 doc="Source catalog column name for the semimajor axis (in arcseconds) "
348 "of the disk half-light ellipse.",
349 dtype=str,
350 default="disk_semimajor",
351 )
352
353 disk_axis_ratio_col = pexConfig.Field(
354 doc="Source catalog column name for the axis ratio of the disk "
355 "half-light ellipse.",
356 dtype=str,
357 default="disk_axis_ratio",
358 )
359
360 disk_pa_col = pexConfig.Field(
361 doc="Source catalog column name for the position angle (measured from "
362 "North through East in degrees) of the semimajor axis of the disk "
363 "half-light ellipse.",
364 dtype=str,
365 default="disk_pa",
366 )
367
368 disk_n_col = pexConfig.Field(
369 doc="Source catalog column name for the Sersic index of the disk.",
370 dtype=str,
371 default="disk_n",
372 )
373
374 bulge_disk_flux_ratio_col = pexConfig.Field(
375 doc="Source catalog column name for the bulge/disk flux ratio.",
376 dtype=str,
377 default="bulge_disk_flux_ratio",
378 )
379
380 mag_col = pexConfig.Field(
381 doc="Source catalog column name template for magnitudes, in the format "
382 "``filter name``_mag_col. E.g., if this config variable is set to "
383 "``%s_mag``, then the i-band magnitude will be searched for in the "
384 "``i_mag`` column of the source catalog.",
385 dtype=str,
386 default="%s_mag"
387 )
388
389 select_col = pexConfig.Field(
390 doc="Source catalog column name to be used to select which sources to "
391 "add.",
392 dtype=str,
393 default="select",
394 )
395
396 length_col = pexConfig.Field(
397 doc="Source catalog column name for trail length (in pixels).",
398 dtype=str,
399 default="trail_length",
400 )
401
402 angle_col = pexConfig.Field(
403 doc="Source catalog column name for trail angle (in radians).",
404 dtype=str,
405 default="trail_angle",
406 )
407
408 # Deprecated config variables
409
410 raColName = pexConfig.Field(
411 doc="RA column name used in the fake source catalog.",
412 dtype=str,
413 default="raJ2000",
414 deprecated="Use `ra_col` instead."
415 )
416
417 decColName = pexConfig.Field(
418 doc="Dec. column name used in the fake source catalog.",
419 dtype=str,
420 default="decJ2000",
421 deprecated="Use `dec_col` instead."
422 )
423
424 diskHLR = pexConfig.Field(
425 doc="Column name for the disk half light radius used in the fake source catalog.",
426 dtype=str,
427 default="DiskHalfLightRadius",
428 deprecated=(
429 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
430 " to specify disk half-light ellipse."
431 )
432 )
433
434 aDisk = pexConfig.Field(
435 doc="The column name for the semi major axis length of the disk component used in the fake source"
436 "catalog.",
437 dtype=str,
438 default="a_d",
439 deprecated=(
440 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
441 " to specify disk half-light ellipse."
442 )
443 )
444
445 bDisk = pexConfig.Field(
446 doc="The column name for the semi minor axis length of the disk component.",
447 dtype=str,
448 default="b_d",
449 deprecated=(
450 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
451 " to specify disk half-light ellipse."
452 )
453 )
454
455 paDisk = pexConfig.Field(
456 doc="The column name for the PA of the disk component used in the fake source catalog.",
457 dtype=str,
458 default="pa_disk",
459 deprecated=(
460 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
461 " to specify disk half-light ellipse."
462 )
463 )
464
465 nDisk = pexConfig.Field(
466 doc="The column name for the sersic index of the disk component used in the fake source catalog.",
467 dtype=str,
468 default="disk_n",
469 deprecated="Use `disk_n_col` instead."
470 )
471
472 bulgeHLR = pexConfig.Field(
473 doc="Column name for the bulge half light radius used in the fake source catalog.",
474 dtype=str,
475 default="BulgeHalfLightRadius",
476 deprecated=(
477 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
478 "`bulge_pa_col` to specify disk half-light ellipse."
479 )
480 )
481
482 aBulge = pexConfig.Field(
483 doc="The column name for the semi major axis length of the bulge component.",
484 dtype=str,
485 default="a_b",
486 deprecated=(
487 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
488 "`bulge_pa_col` to specify disk half-light ellipse."
489 )
490 )
491
492 bBulge = pexConfig.Field(
493 doc="The column name for the semi minor axis length of the bulge component used in the fake source "
494 "catalog.",
495 dtype=str,
496 default="b_b",
497 deprecated=(
498 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
499 "`bulge_pa_col` to specify disk half-light ellipse."
500 )
501 )
502
503 paBulge = pexConfig.Field(
504 doc="The column name for the PA of the bulge component used in the fake source catalog.",
505 dtype=str,
506 default="pa_bulge",
507 deprecated=(
508 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
509 "`bulge_pa_col` to specify disk half-light ellipse."
510 )
511 )
512
513 nBulge = pexConfig.Field(
514 doc="The column name for the sersic index of the bulge component used in the fake source catalog.",
515 dtype=str,
516 default="bulge_n",
517 deprecated="Use `bulge_n_col` instead."
518 )
519
520 magVar = pexConfig.Field(
521 doc="The column name for the magnitude calculated taking variability into account. In the format "
522 "``filter name``magVar, e.g. imagVar for the magnitude in the i band.",
523 dtype=str,
524 default="%smagVar",
525 deprecated="Use `mag_col` instead."
526 )
527
528 sourceSelectionColName = pexConfig.Field(
529 doc="The name of the column in the input fakes catalogue to be used to determine which sources to"
530 "add, default is none and when this is used all sources are added.",
531 dtype=str,
532 default="templateSource",
533 deprecated="Use `select_col` instead."
534 )
535
536
537class InsertFakesTask(PipelineTask, CmdLineTask):
538 """Insert fake objects into images.
539
540 Add fake stars and galaxies to the given image, read in through the dataRef. Galaxy parameters are read in
541 from the specified file and then modelled using galsim.
542
543 `InsertFakesTask` has five functions that make images of the fake sources and then add them to the
544 image.
545
546 `addPixCoords`
547 Use the WCS information to add the pixel coordinates of each source.
548 `mkFakeGalsimGalaxies`
549 Use Galsim to make fake double sersic galaxies for each set of galaxy parameters in the input file.
550 `mkFakeStars`
551 Use the PSF information from the image to make a fake star using the magnitude information from the
552 input file.
553 `cleanCat`
554 Remove rows of the input fake catalog which have half light radius, of either the bulge or the disk,
555 that are 0. Also removes rows that have Sersic index outside of galsim's allowed paramters. If
556 the config option sourceSelectionColName is set then this function limits the catalog of input fakes
557 to only those which are True in this column.
558 `addFakeSources`
559 Add the fake sources to the image.
560
561 """
562
563 _DefaultName = "insertFakes"
564 ConfigClass = InsertFakesConfig
565
566 def runDataRef(self, dataRef):
567 """Read in/write out the required data products and add fake sources to the deepCoadd.
568
569 Parameters
570 ----------
572 Data reference defining the image to have fakes added to it
573 Used to access the following data products:
574 deepCoadd
575 """
576
577 self.log.info("Adding fakes to: tract: %d, patch: %s, filter: %s",
578 dataRef.dataId["tract"], dataRef.dataId["patch"], dataRef.dataId["filter"])
579
580 # To do: should it warn when asked to insert variable sources into the coadd
581
582 if self.config.fakeType == "static":
583 fakeCat = dataRef.get("deepCoadd_fakeSourceCat").toDataFrame()
584 # To do: DM-16254, the read and write of the fake catalogs will be changed once the new pipeline
585 # task structure for ref cats is in place.
586 self.fakeSourceCatType = "deepCoadd_fakeSourceCat"
587 else:
588 fakeCat = Table.read(self.config.fakeType).to_pandas()
589
590 coadd = dataRef.get("deepCoadd")
591 wcs = coadd.getWcs()
592 photoCalib = coadd.getPhotoCalib()
593
594 imageWithFakes = self.run(fakeCat, coadd, wcs, photoCalib)
595
596 dataRef.put(imageWithFakes.imageWithFakes, "fakes_deepCoadd")
597
598 def runQuantum(self, butlerQC, inputRefs, outputRefs):
599 inputs = butlerQC.get(inputRefs)
600 inputs["wcs"] = inputs["image"].getWcs()
601 inputs["photoCalib"] = inputs["image"].getPhotoCalib()
602
603 outputs = self.run(**inputs)
604 butlerQC.put(outputs, outputRefs)
605
606 @classmethod
607 def _makeArgumentParser(cls):
608 parser = pipeBase.ArgumentParser(name=cls._DefaultName)
609 parser.add_id_argument(name="--id", datasetType="deepCoadd",
610 help="data IDs for the deepCoadd, e.g. --id tract=12345 patch=1,2 filter=r",
611 ContainerClass=ExistingCoaddDataIdContainer)
612 return parser
613
614 def run(self, fakeCat, image, wcs, photoCalib):
615 """Add fake sources to an image.
616
617 Parameters
618 ----------
619 fakeCat : `pandas.core.frame.DataFrame`
620 The catalog of fake sources to be input
621 image : `lsst.afw.image.exposure.exposure.ExposureF`
622 The image into which the fake sources should be added
624 WCS to use to add fake sources
625 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
626 Photometric calibration to be used to calibrate the fake sources
627
628 Returns
629 -------
630 resultStruct : `lsst.pipe.base.struct.Struct`
631 contains : image : `lsst.afw.image.exposure.exposure.ExposureF`
632
633 Notes
634 -----
635 Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
636 light radius = 0 (if ``config.doCleanCat = True``).
637
638 Adds the ``Fake`` mask plane to the image which is then set by `addFakeSources` to mark where fake
639 sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
640 and fake stars, using the PSF models from the PSF information for the image. These are then added to
641 the image and the image with fakes included returned.
642
643 The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
644 this is then convolved with the PSF at that point.
645 """
646 # Attach overriding wcs and photoCalib to image, but retain originals
647 # so we can reset at the end.
648 origWcs = image.getWcs()
649 origPhotoCalib = image.getPhotoCalib()
650 image.setWcs(wcs)
651 image.setPhotoCalib(photoCalib)
652
653 band = image.getFilter().bandLabel
654 fakeCat = self._standardizeColumns(fakeCat, band)
655
656 fakeCat = self.addPixCoords(fakeCat, image)
657 fakeCat = self.trimFakeCat(fakeCat, image)
658
659 if len(fakeCat) > 0:
660 if not self.config.insertImages:
661 if isinstance(fakeCat[self.config.sourceType].iloc[0], str):
662 galCheckVal = "galaxy"
663 starCheckVal = "star"
664 trailCheckVal = "trail"
665 elif isinstance(fakeCat[self.config.sourceType].iloc[0], bytes):
666 galCheckVal = b"galaxy"
667 starCheckVal = b"star"
668 trailCheckVal = b"trail"
669 elif isinstance(fakeCat[self.config.sourceType].iloc[0], (int, float)):
670 galCheckVal = 1
671 starCheckVal = 0
672 trailCheckVal = 2
673 else:
674 raise TypeError(
675 "sourceType column does not have required type, should be str, bytes or int"
676 )
677 if self.config.doCleanCat:
678 fakeCat = self.cleanCat(fakeCat, starCheckVal)
679
680 generator = self._generateGSObjectsFromCatalog(image, fakeCat, galCheckVal, starCheckVal,
681 trailCheckVal)
682 else:
683 generator = self._generateGSObjectsFromImages(image, fakeCat)
684 _add_fake_sources(image, generator, calibFluxRadius=self.config.calibFluxRadius, logger=self.log)
685 elif len(fakeCat) == 0 and self.config.doProcessAllDataIds:
686 self.log.warning("No fakes found for this dataRef; processing anyway.")
687 image.mask.addMaskPlane("FAKE")
688 else:
689 raise RuntimeError("No fakes found for this dataRef.")
690
691 # restore original exposure WCS and photoCalib
692 image.setWcs(origWcs)
693 image.setPhotoCalib(origPhotoCalib)
694
695 resultStruct = pipeBase.Struct(imageWithFakes=image)
696
697 return resultStruct
698
699 def _standardizeColumns(self, fakeCat, band):
700 """Use config variables to 'standardize' the expected columns and column
701 names in the input catalog.
702
703 Parameters
704 ----------
705 fakeCat : `pandas.core.frame.DataFrame`
706 The catalog of fake sources to be input
707 band : `str`
708 Label for the current band being processed.
709
710 Returns
711 -------
712 outCat : `pandas.core.frame.DataFrame`
713 The standardized catalog of fake sources
714 """
715 cfg = self.config
716 replace_dict = {}
717
718 def add_to_replace_dict(new_name, depr_name, std_name):
719 if new_name in fakeCat.columns:
720 replace_dict[new_name] = std_name
721 elif depr_name in fakeCat.columns:
722 replace_dict[depr_name] = std_name
723 else:
724 raise ValueError(f"Could not determine column for {std_name}.")
725
726 # Prefer new config variables over deprecated config variables.
727 # RA, dec, and mag are always required. Do these first
728 for new_name, depr_name, std_name in [
729 (cfg.ra_col, cfg.raColName, 'ra'),
730 (cfg.dec_col, cfg.decColName, 'dec'),
731 (cfg.mag_col%band, cfg.magVar%band, 'mag')
732 ]:
733 add_to_replace_dict(new_name, depr_name, std_name)
734 # Only handle bulge/disk params if not injecting images
735 if not cfg.insertImages and not cfg.insertOnlyStars:
736 for new_name, depr_name, std_name in [
737 (cfg.bulge_n_col, cfg.nBulge, 'bulge_n'),
738 (cfg.bulge_pa_col, cfg.paBulge, 'bulge_pa'),
739 (cfg.disk_n_col, cfg.nDisk, 'disk_n'),
740 (cfg.disk_pa_col, cfg.paDisk, 'disk_pa'),
741 ]:
742 add_to_replace_dict(new_name, depr_name, std_name)
743
744 if cfg.doSubSelectSources:
745 add_to_replace_dict(
746 cfg.select_col,
747 cfg.sourceSelectionColName,
748 'select'
749 )
750 fakeCat = fakeCat.rename(columns=replace_dict, copy=False)
751
752 # Handling the half-light radius and axis-ratio are trickier, since we
753 # moved from expecting (HLR, a, b) to expecting (semimajor, axis_ratio).
754 # Just handle these manually.
755 if not cfg.insertImages and not cfg.insertOnlyStars:
756 if (
757 cfg.bulge_semimajor_col in fakeCat.columns
758 and cfg.bulge_axis_ratio_col in fakeCat.columns
759 ):
760 fakeCat = fakeCat.rename(
761 columns={
762 cfg.bulge_semimajor_col: 'bulge_semimajor',
763 cfg.bulge_axis_ratio_col: 'bulge_axis_ratio',
764 cfg.disk_semimajor_col: 'disk_semimajor',
765 cfg.disk_axis_ratio_col: 'disk_axis_ratio',
766 },
767 copy=False
768 )
769 elif (
770 cfg.bulgeHLR in fakeCat.columns
771 and cfg.aBulge in fakeCat.columns
772 and cfg.bBulge in fakeCat.columns
773 ):
774 fakeCat['bulge_axis_ratio'] = (
775 fakeCat[cfg.bBulge]/fakeCat[cfg.aBulge]
776 )
777 fakeCat['bulge_semimajor'] = (
778 fakeCat[cfg.bulgeHLR]/np.sqrt(fakeCat['bulge_axis_ratio'])
779 )
780 fakeCat['disk_axis_ratio'] = (
781 fakeCat[cfg.bDisk]/fakeCat[cfg.aDisk]
782 )
783 fakeCat['disk_semimajor'] = (
784 fakeCat[cfg.diskHLR]/np.sqrt(fakeCat['disk_axis_ratio'])
785 )
786 else:
787 raise ValueError(
788 "Could not determine columns for half-light radius and "
789 "axis ratio."
790 )
791
792 # Process the bulge/disk flux ratio if possible.
793 if cfg.bulge_disk_flux_ratio_col in fakeCat.columns:
794 fakeCat = fakeCat.rename(
795 columns={
796 cfg.bulge_disk_flux_ratio_col: 'bulge_disk_flux_ratio'
797 },
798 copy=False
799 )
800 else:
801 fakeCat['bulge_disk_flux_ratio'] = 1.0
802
803 return fakeCat
804
805 def _generateGSObjectsFromCatalog(self, exposure, fakeCat, galCheckVal, starCheckVal, trailCheckVal):
806 """Process catalog to generate `galsim.GSObject` s.
807
808 Parameters
809 ----------
810 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
811 The exposure into which the fake sources should be added
812 fakeCat : `pandas.core.frame.DataFrame`
813 The catalog of fake sources to be input
814 galCheckVal : `str`, `bytes` or `int`
815 The value that is set in the sourceType column to specify an object is a galaxy.
816 starCheckVal : `str`, `bytes` or `int`
817 The value that is set in the sourceType column to specify an object is a star.
818 trailCheckVal : `str`, `bytes` or `int`
819 The value that is set in the sourceType column to specify an object is a star
820
821 Yields
822 ------
823 gsObjects : `generator`
824 A generator of tuples of `lsst.geom.SpherePoint` and `galsim.GSObject`.
825 """
826 wcs = exposure.getWcs()
827 photoCalib = exposure.getPhotoCalib()
828
829 self.log.info("Making %d objects for insertion", len(fakeCat))
830
831 for (index, row) in fakeCat.iterrows():
832 ra = row['ra']
833 dec = row['dec']
834 skyCoord = SpherePoint(ra, dec, radians)
835 xy = wcs.skyToPixel(skyCoord)
836
837 try:
838 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
839 except LogicError:
840 continue
841
842 sourceType = row[self.config.sourceType]
843 if sourceType == galCheckVal:
844 # GalSim convention: HLR = sqrt(a * b) = a * sqrt(b / a)
845 bulge_gs_HLR = row['bulge_semimajor']*np.sqrt(row['bulge_axis_ratio'])
846 bulge = galsim.Sersic(n=row['bulge_n'], half_light_radius=bulge_gs_HLR)
847 bulge = bulge.shear(q=row['bulge_axis_ratio'], beta=((90 - row['bulge_pa'])*galsim.degrees))
848
849 disk_gs_HLR = row['disk_semimajor']*np.sqrt(row['disk_axis_ratio'])
850 disk = galsim.Sersic(n=row['disk_n'], half_light_radius=disk_gs_HLR)
851 disk = disk.shear(q=row['disk_axis_ratio'], beta=((90 - row['disk_pa'])*galsim.degrees))
852
853 gal = bulge*row['bulge_disk_flux_ratio'] + disk
854 gal = gal.withFlux(flux)
855
856 yield skyCoord, gal
857 elif sourceType == starCheckVal:
858 star = galsim.DeltaFunction()
859 star = star.withFlux(flux)
860 yield skyCoord, star
861 elif sourceType == trailCheckVal:
862 length = row['trail_length']
863 angle = row['trail_angle']
864
865 # Make a 'thin' box to mimic a line surface brightness profile
866 thickness = 1e-6 # Make the box much thinner than a pixel
867 theta = galsim.Angle(angle*galsim.radians)
868 trail = galsim.Box(length, thickness)
869 trail = trail.rotate(theta)
870 trail = trail.withFlux(flux*length)
871
872 # Galsim objects are assumed to be in sky-coordinates. Since
873 # we want the trail to appear as defined above in image-
874 # coordinates, we must transform the trail here.
875 mat = wcs.linearizePixelToSky(skyCoord, geom.arcseconds).getMatrix()
876 trail = trail.transform(mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1])
877
878 yield skyCoord, trail
879 else:
880 raise TypeError(f"Unknown sourceType {sourceType}")
881
882 def _generateGSObjectsFromImages(self, exposure, fakeCat):
883 """Process catalog to generate `galsim.GSObject` s.
884
885 Parameters
886 ----------
887 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
888 The exposure into which the fake sources should be added
889 fakeCat : `pandas.core.frame.DataFrame`
890 The catalog of fake sources to be input
891
892 Yields
893 ------
894 gsObjects : `generator`
895 A generator of tuples of `lsst.geom.SpherePoint` and `galsim.GSObject`.
896 """
897 band = exposure.getFilter().bandLabel
898 wcs = exposure.getWcs()
899 photoCalib = exposure.getPhotoCalib()
900
901 self.log.info("Processing %d fake images", len(fakeCat))
902
903 for (index, row) in fakeCat.iterrows():
904 ra = row['ra']
905 dec = row['dec']
906 skyCoord = SpherePoint(ra, dec, radians)
907 xy = wcs.skyToPixel(skyCoord)
908
909 try:
910 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
911 except LogicError:
912 continue
913
914 imFile = row[band+"imFilename"]
915 try:
916 imFile = imFile.decode("utf-8")
917 except AttributeError:
918 pass
919 imFile = imFile.strip()
920 im = galsim.fits.read(imFile, read_header=True)
921
922 if self.config.fits_alignment == "wcs":
923 # galsim.fits.read will always attach a WCS to its output. If it
924 # can't find a WCS in the FITS header, then it defaults to
925 # scale = 1.0 arcsec / pix. So if that's the scale, then we
926 # need to check if it was explicitly set or if it's just the
927 # default. If it's just the default then we should raise an
928 # exception.
929 if _isWCSGalsimDefault(im.wcs, im.header):
930 raise RuntimeError(
931 f"Cannot find WCS in input FITS file {imFile}"
932 )
933 elif self.config.fits_alignment == "pixel":
934 # Here we need to set im.wcs to the local WCS at the target
935 # position.
936 linWcs = wcs.linearizePixelToSky(skyCoord, geom.arcseconds)
937 mat = linWcs.getMatrix()
938 im.wcs = galsim.JacobianWCS(
939 mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1]
940 )
941 else:
942 raise ValueError(
943 f"Unknown fits_alignment type {self.config.fits_alignment}"
944 )
945
946 obj = galsim.InterpolatedImage(im, calculate_stepk=False)
947 obj = obj.withFlux(flux)
948 yield skyCoord, obj
949
950 def processImagesForInsertion(self, fakeCat, wcs, psf, photoCalib, band, pixelScale):
951 """Process images from files into the format needed for insertion.
952
953 Parameters
954 ----------
955 fakeCat : `pandas.core.frame.DataFrame`
956 The catalog of fake sources to be input
957 wcs : `lsst.afw.geom.skyWcs.skyWcs.SkyWc`
958 WCS to use to add fake sources
959 psf : `lsst.meas.algorithms.coaddPsf.coaddPsf.CoaddPsf` or
960 `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
961 The PSF information to use to make the PSF images
962 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
963 Photometric calibration to be used to calibrate the fake sources
964 band : `str`
965 The filter band that the observation was taken in.
966 pixelScale : `float`
967 The pixel scale of the image the sources are to be added to.
968
969 Returns
970 -------
971 galImages : `list`
972 A list of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
973 `lsst.geom.Point2D` of their locations.
974 For sources labelled as galaxy.
975 starImages : `list`
976 A list of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
977 `lsst.geom.Point2D` of their locations.
978 For sources labelled as star.
979
980 Notes
981 -----
982 The input fakes catalog needs to contain the absolute path to the image in the
983 band that is being used to add images to. It also needs to have the R.A. and
984 declination of the fake source in radians and the sourceType of the object.
985 """
986 galImages = []
987 starImages = []
988
989 self.log.info("Processing %d fake images", len(fakeCat))
990
991 for (imFile, sourceType, mag, x, y) in zip(fakeCat[band + "imFilename"].array,
992 fakeCat["sourceType"].array,
993 fakeCat['mag'].array,
994 fakeCat["x"].array, fakeCat["y"].array):
995
996 im = afwImage.ImageF.readFits(imFile)
997
998 xy = geom.Point2D(x, y)
999
1000 # We put these two PSF calculations within this same try block so that we catch cases
1001 # where the object's position is outside of the image.
1002 try:
1003 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1004 psfKernel = psf.computeKernelImage(xy).getArray()
1005 psfKernel /= correctedFlux
1006
1007 except InvalidParameterError:
1008 self.log.info("%s at %0.4f, %0.4f outside of image", sourceType, x, y)
1009 continue
1010
1011 psfIm = galsim.InterpolatedImage(galsim.Image(psfKernel), scale=pixelScale)
1012 galsimIm = galsim.InterpolatedImage(galsim.Image(im.array), scale=pixelScale)
1013 convIm = galsim.Convolve([galsimIm, psfIm])
1014
1015 try:
1016 outIm = convIm.drawImage(scale=pixelScale, method="real_space").array
1017 except (galsim.errors.GalSimFFTSizeError, MemoryError):
1018 continue
1019
1020 imSum = np.sum(outIm)
1021 divIm = outIm/imSum
1022
1023 try:
1024 flux = photoCalib.magnitudeToInstFlux(mag, xy)
1025 except LogicError:
1026 flux = 0
1027
1028 imWithFlux = flux*divIm
1029
1030 if sourceType == b"galaxy":
1031 galImages.append((afwImage.ImageF(imWithFlux), xy))
1032 if sourceType == b"star":
1033 starImages.append((afwImage.ImageF(imWithFlux), xy))
1034
1035 return galImages, starImages
1036
1037 def addPixCoords(self, fakeCat, image):
1038
1039 """Add pixel coordinates to the catalog of fakes.
1040
1041 Parameters
1042 ----------
1043 fakeCat : `pandas.core.frame.DataFrame`
1044 The catalog of fake sources to be input
1045 image : `lsst.afw.image.exposure.exposure.ExposureF`
1046 The image into which the fake sources should be added
1047
1048 Returns
1049 -------
1050 fakeCat : `pandas.core.frame.DataFrame`
1051 """
1052 wcs = image.getWcs()
1053 ras = fakeCat['ra'].values
1054 decs = fakeCat['dec'].values
1055 xs, ys = wcs.skyToPixelArray(ras, decs)
1056 fakeCat["x"] = xs
1057 fakeCat["y"] = ys
1058
1059 return fakeCat
1060
1061 def trimFakeCat(self, fakeCat, image):
1062 """Trim the fake cat to the size of the input image plus trimBuffer padding.
1063
1064 `fakeCat` must be processed with addPixCoords before using this method.
1065
1066 Parameters
1067 ----------
1068 fakeCat : `pandas.core.frame.DataFrame`
1069 The catalog of fake sources to be input
1070 image : `lsst.afw.image.exposure.exposure.ExposureF`
1071 The image into which the fake sources should be added
1072
1073 Returns
1074 -------
1075 fakeCat : `pandas.core.frame.DataFrame`
1076 The original fakeCat trimmed to the area of the image
1077 """
1078 wideBbox = Box2D(image.getBBox()).dilatedBy(self.config.trimBuffer)
1079
1080 # prefilter in ra/dec to avoid cases where the wcs incorrectly maps
1081 # input fakes which are really off the chip onto it.
1082 ras = fakeCat[self.config.ra_col].values * u.rad
1083 decs = fakeCat[self.config.dec_col].values * u.rad
1084
1085 isContainedRaDec = image.containsSkyCoords(ras, decs, padding=self.config.trimBuffer)
1086
1087 # also filter on the image BBox in pixel space
1088 xs = fakeCat["x"].values
1089 ys = fakeCat["y"].values
1090
1091 isContainedXy = xs >= wideBbox.minX
1092 isContainedXy &= xs <= wideBbox.maxX
1093 isContainedXy &= ys >= wideBbox.minY
1094 isContainedXy &= ys <= wideBbox.maxY
1095
1096 return fakeCat[isContainedRaDec & isContainedXy]
1097
1098 def mkFakeGalsimGalaxies(self, fakeCat, band, photoCalib, pixelScale, psf, image):
1099 """Make images of fake galaxies using GalSim.
1100
1101 Parameters
1102 ----------
1103 band : `str`
1104 pixelScale : `float`
1105 psf : `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
1106 The PSF information to use to make the PSF images
1107 fakeCat : `pandas.core.frame.DataFrame`
1108 The catalog of fake sources to be input
1109 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
1110 Photometric calibration to be used to calibrate the fake sources
1111
1112 Yields
1113 -------
1114 galImages : `generator`
1115 A generator of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
1116 `lsst.geom.Point2D` of their locations.
1117
1118 Notes
1119 -----
1120
1121 Fake galaxies are made by combining two sersic profiles, one for the bulge and one for the disk. Each
1122 component has an individual sersic index (n), a, b and position angle (PA). The combined profile is
1123 then convolved with the PSF at the specified x, y position on the image.
1124
1125 The names of the columns in the ``fakeCat`` are configurable and are the column names from the
1126 University of Washington simulations database as default. For more information see the doc strings
1127 attached to the config options.
1128
1129 See mkFakeStars doc string for an explanation of calibration to instrumental flux.
1130 """
1131
1132 self.log.info("Making %d fake galaxy images", len(fakeCat))
1133
1134 for (index, row) in fakeCat.iterrows():
1135 xy = geom.Point2D(row["x"], row["y"])
1136
1137 # We put these two PSF calculations within this same try block so that we catch cases
1138 # where the object's position is outside of the image.
1139 try:
1140 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1141 psfKernel = psf.computeKernelImage(xy).getArray()
1142 psfKernel /= correctedFlux
1143
1144 except InvalidParameterError:
1145 self.log.info("Galaxy at %0.4f, %0.4f outside of image", row["x"], row["y"])
1146 continue
1147
1148 try:
1149 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
1150 except LogicError:
1151 flux = 0
1152
1153 # GalSim convention: HLR = sqrt(a * b) = a * sqrt(b / a)
1154 bulge_gs_HLR = row['bulge_semimajor']*np.sqrt(row['bulge_axis_ratio'])
1155 bulge = galsim.Sersic(n=row['bulge_n'], half_light_radius=bulge_gs_HLR)
1156 bulge = bulge.shear(q=row['bulge_axis_ratio'], beta=((90 - row['bulge_pa'])*galsim.degrees))
1157
1158 disk_gs_HLR = row['disk_semimajor']*np.sqrt(row['disk_axis_ratio'])
1159 disk = galsim.Sersic(n=row['disk_n'], half_light_radius=disk_gs_HLR)
1160 disk = disk.shear(q=row['disk_axis_ratio'], beta=((90 - row['disk_pa'])*galsim.degrees))
1161
1162 gal = bulge*row['bulge_disk_flux_ratio'] + disk
1163 gal = gal.withFlux(flux)
1164
1165 psfIm = galsim.InterpolatedImage(galsim.Image(psfKernel), scale=pixelScale)
1166 gal = galsim.Convolve([gal, psfIm])
1167 try:
1168 galIm = gal.drawImage(scale=pixelScale, method="real_space").array
1169 except (galsim.errors.GalSimFFTSizeError, MemoryError):
1170 continue
1171
1172 yield (afwImage.ImageF(galIm), xy)
1173
1174 def mkFakeStars(self, fakeCat, band, photoCalib, psf, image):
1175
1176 """Make fake stars based off the properties in the fakeCat.
1177
1178 Parameters
1179 ----------
1180 band : `str`
1181 psf : `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
1182 The PSF information to use to make the PSF images
1183 fakeCat : `pandas.core.frame.DataFrame`
1184 The catalog of fake sources to be input
1185 image : `lsst.afw.image.exposure.exposure.ExposureF`
1186 The image into which the fake sources should be added
1187 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
1188 Photometric calibration to be used to calibrate the fake sources
1189
1190 Yields
1191 -------
1192 starImages : `generator`
1193 A generator of tuples of `lsst.afw.image.ImageF` of fake stars and
1194 `lsst.geom.Point2D` of their locations.
1195
1196 Notes
1197 -----
1198 To take a given magnitude and translate to the number of counts in the image
1199 we use photoCalib.magnitudeToInstFlux, which returns the instrumental flux for the
1200 given calibration radius used in the photometric calibration step.
1201 Thus `calibFluxRadius` should be set to this same radius so that we can normalize
1202 the PSF model to the correct instrumental flux within calibFluxRadius.
1203 """
1204
1205 self.log.info("Making %d fake star images", len(fakeCat))
1206
1207 for (index, row) in fakeCat.iterrows():
1208 xy = geom.Point2D(row["x"], row["y"])
1209
1210 # We put these two PSF calculations within this same try block so that we catch cases
1211 # where the object's position is outside of the image.
1212 try:
1213 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1214 starIm = psf.computeImage(xy)
1215 starIm /= correctedFlux
1216
1217 except InvalidParameterError:
1218 self.log.info("Star at %0.4f, %0.4f outside of image", row["x"], row["y"])
1219 continue
1220
1221 try:
1222 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
1223 except LogicError:
1224 flux = 0
1225
1226 starIm *= flux
1227 yield ((starIm.convertF(), xy))
1228
1229 def cleanCat(self, fakeCat, starCheckVal):
1230 """Remove rows from the fakes catalog which have HLR = 0 for either the buldge or disk component,
1231 also remove galaxies that have Sersic index outside the galsim min and max
1232 allowed (0.3 <= n <= 6.2).
1233
1234 Parameters
1235 ----------
1236 fakeCat : `pandas.core.frame.DataFrame`
1237 The catalog of fake sources to be input
1238 starCheckVal : `str`, `bytes` or `int`
1239 The value that is set in the sourceType column to specifiy an object is a star.
1240
1241 Returns
1242 -------
1243 fakeCat : `pandas.core.frame.DataFrame`
1244 The input catalog of fake sources but with the bad objects removed
1245 """
1246
1247 rowsToKeep = (((fakeCat['bulge_semimajor'] != 0.0) & (fakeCat['disk_semimajor'] != 0.0))
1248 | (fakeCat[self.config.sourceType] == starCheckVal))
1249 numRowsNotUsed = len(fakeCat) - len(np.where(rowsToKeep)[0])
1250 self.log.info("Removing %d rows with HLR = 0 for either the bulge or disk", numRowsNotUsed)
1251 fakeCat = fakeCat[rowsToKeep]
1252
1253 minN = galsim.Sersic._minimum_n
1254 maxN = galsim.Sersic._maximum_n
1255 rowsWithGoodSersic = (((fakeCat['bulge_n'] >= minN) & (fakeCat['bulge_n'] <= maxN)
1256 & (fakeCat['disk_n'] >= minN) & (fakeCat['disk_n'] <= maxN))
1257 | (fakeCat[self.config.sourceType] == starCheckVal))
1258 numRowsNotUsed = len(fakeCat) - len(np.where(rowsWithGoodSersic)[0])
1259 self.log.info("Removing %d rows of galaxies with nBulge or nDisk outside of %0.2f <= n <= %0.2f",
1260 numRowsNotUsed, minN, maxN)
1261 fakeCat = fakeCat[rowsWithGoodSersic]
1262
1263 if self.config.doSubSelectSources:
1264 numRowsNotUsed = len(fakeCat) - len(fakeCat['select'])
1265 self.log.info("Removing %d rows which were not designated as template sources", numRowsNotUsed)
1266 fakeCat = fakeCat[fakeCat['select']]
1267
1268 return fakeCat
1269
1270 def addFakeSources(self, image, fakeImages, sourceType):
1271 """Add the fake sources to the given image
1272
1273 Parameters
1274 ----------
1275 image : `lsst.afw.image.exposure.exposure.ExposureF`
1276 The image into which the fake sources should be added
1277 fakeImages : `typing.Iterator` [`tuple` ['lsst.afw.image.ImageF`, `lsst.geom.Point2d`]]
1278 An iterator of tuples that contains (or generates) images of fake sources,
1279 and the locations they are to be inserted at.
1280 sourceType : `str`
1281 The type (star/galaxy) of fake sources input
1282
1283 Returns
1284 -------
1285 image : `lsst.afw.image.exposure.exposure.ExposureF`
1286
1287 Notes
1288 -----
1289 Uses the x, y information in the ``fakeCat`` to position an image of the fake interpolated onto the
1290 pixel grid of the image. Sets the ``FAKE`` mask plane for the pixels added with the fake source.
1291 """
1292
1293 imageBBox = image.getBBox()
1294 imageMI = image.maskedImage
1295
1296 for (fakeImage, xy) in fakeImages:
1297 X0 = xy.getX() - fakeImage.getWidth()/2 + 0.5
1298 Y0 = xy.getY() - fakeImage.getHeight()/2 + 0.5
1299 self.log.debug("Adding fake source at %d, %d", xy.getX(), xy.getY())
1300 if sourceType == "galaxy":
1301 interpFakeImage = afwMath.offsetImage(fakeImage, X0, Y0, "lanczos3")
1302 else:
1303 interpFakeImage = fakeImage
1304
1305 interpFakeImBBox = interpFakeImage.getBBox()
1306 interpFakeImBBox.clip(imageBBox)
1307
1308 if interpFakeImBBox.getArea() > 0:
1309 imageMIView = imageMI[interpFakeImBBox]
1310 clippedFakeImage = interpFakeImage[interpFakeImBBox]
1311 clippedFakeImageMI = afwImage.MaskedImageF(clippedFakeImage)
1312 clippedFakeImageMI.mask.set(self.bitmask)
1313 imageMIView += clippedFakeImageMI
1314
1315 return image
1316
1317 def _getMetadataName(self):
1318 """Disable metadata writing"""
1319 return None
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition: SkyWcs.h:117
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
An integer coordinate rectangle.
Definition: Box.h:55
Point in an unspecified spherical coordinate system.
Definition: SpherePoint.h:57
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
std::shared_ptr< ImageT > offsetImage(ImageT const &image, float dx, float dy, std::string const &algorithmName="lanczos5", unsigned int buffer=0)
Return an image offset by (dx, dy) using the specified algorithm.
Definition: offsetImage.cc:41
bool any(CoordinateExpr< N > const &expr) noexcept
Return true if any elements are true.
Point< double, 2 > Point2D
Definition: Point.h:324
def run(self, coaddExposures, bbox, wcs, dataIds, **kwargs)
Definition: getTemplate.py:596
def addPixCoords(self, fakeCat, image)
def mkFakeStars(self, fakeCat, band, photoCalib, psf, image)
def mkFakeGalsimGalaxies(self, fakeCat, band, photoCalib, pixelScale, psf, image)
def cleanCat(self, fakeCat, starCheckVal)
def processImagesForInsertion(self, fakeCat, wcs, psf, photoCalib, band, pixelScale)
Definition: insertFakes.py:950
def trimFakeCat(self, fakeCat, image)
def addFakeSources(self, image, fakeImages, sourceType)