LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
isrMock.py
Go to the documentation of this file.
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21
22import copy
23import numpy as np
24import tempfile
25
26import lsst.geom
27import lsst.afw.geom as afwGeom
28import lsst.afw.image as afwImage
29
30import lsst.afw.cameraGeom.utils as afwUtils
31import lsst.afw.cameraGeom.testUtils as afwTestUtils
32import lsst.pex.config as pexConfig
33import lsst.pipe.base as pipeBase
34from .crosstalk import CrosstalkCalib
35from .defects import Defects
36
37__all__ = ["IsrMockConfig", "IsrMock", "RawMock", "TrimmedRawMock", "RawDictMock",
38 "CalibratedRawMock", "MasterMock",
39 "BiasMock", "DarkMock", "FlatMock", "FringeMock", "UntrimmedFringeMock",
40 "BfKernelMock", "DefectMock", "CrosstalkCoeffMock", "TransmissionMock",
41 "DataRefMock"]
42
43
44class IsrMockConfig(pexConfig.Config):
45 """Configuration parameters for isrMock.
46
47 These parameters produce generic fixed position signals from
48 various sources, and combine them in a way that matches how those
49 signals are combined to create real data. The camera used is the
50 test camera defined by the afwUtils code.
51 """
52 # Detector parameters. "Exposure" parameters.
53 isLsstLike = pexConfig.Field(
54 dtype=bool,
55 default=False,
56 doc="If True, products have one raw image per amplifier, otherwise, one raw image per detector.",
57 )
58 plateScale = pexConfig.Field(
59 dtype=float,
60 default=20.0,
61 doc="Plate scale used in constructing mock camera.",
62 )
63 radialDistortion = pexConfig.Field(
64 dtype=float,
65 default=0.925,
66 doc="Radial distortion term used in constructing mock camera.",
67 )
68 isTrimmed = pexConfig.Field(
69 dtype=bool,
70 default=True,
71 doc="If True, amplifiers have been trimmed and mosaicked to remove regions outside the data BBox.",
72 )
73 detectorIndex = pexConfig.Field(
74 dtype=int,
75 default=20,
76 doc="Index for the detector to use. The default value uses a standard 2x4 array of amps.",
77 )
78 rngSeed = pexConfig.Field(
79 dtype=int,
80 default=20000913,
81 doc="Seed for random number generator used to add noise.",
82 )
83 # TODO: DM-18345 Check that mocks scale correctly when gain != 1.0
84 gain = pexConfig.Field(
85 dtype=float,
86 default=1.0,
87 doc="Gain for simulated data in e^-/DN.",
88 )
89 readNoise = pexConfig.Field(
90 dtype=float,
91 default=5.0,
92 doc="Read noise of the detector in e-.",
93 )
94 expTime = pexConfig.Field(
95 dtype=float,
96 default=5.0,
97 doc="Exposure time for simulated data.",
98 )
99
100 # Signal parameters
101 skyLevel = pexConfig.Field(
102 dtype=float,
103 default=1000.0,
104 doc="Background contribution to be generated from 'the sky' in DN.",
105 )
106 sourceFlux = pexConfig.ListField(
107 dtype=float,
108 default=[45000.0],
109 doc="Peak flux level (in DN) of simulated 'astronomical sources'.",
110 )
111 sourceAmp = pexConfig.ListField(
112 dtype=int,
113 default=[0],
114 doc="Amplifier to place simulated 'astronomical sources'.",
115 )
116 sourceX = pexConfig.ListField(
117 dtype=float,
118 default=[50.0],
119 doc="Peak position (in amplifier coordinates) of simulated 'astronomical sources'.",
120 )
121 sourceY = pexConfig.ListField(
122 dtype=float,
123 default=[25.0],
124 doc="Peak position (in amplifier coordinates) of simulated 'astronomical sources'.",
125 )
126 overscanScale = pexConfig.Field(
127 dtype=float,
128 default=100.0,
129 doc="Amplitude (in DN) of the ramp function to add to overscan data.",
130 )
131 biasLevel = pexConfig.Field(
132 dtype=float,
133 default=8000.0,
134 doc="Background contribution to be generated from the bias offset in DN.",
135 )
136 darkRate = pexConfig.Field(
137 dtype=float,
138 default=5.0,
139 doc="Background level contribution (in e-/s) to be generated from dark current.",
140 )
141 darkTime = pexConfig.Field(
142 dtype=float,
143 default=5.0,
144 doc="Exposure time for the dark current contribution.",
145 )
146 flatDrop = pexConfig.Field(
147 dtype=float,
148 default=0.1,
149 doc="Fractional flux drop due to flat from center to edge of detector along x-axis.",
150 )
151 fringeScale = pexConfig.ListField(
152 dtype=float,
153 default=[200.0],
154 doc="Peak fluxes for the components of the fringe ripple in DN.",
155 )
156 fringeX0 = pexConfig.ListField(
157 dtype=float,
158 default=[-100],
159 doc="Center position for the fringe ripples.",
160 )
161 fringeY0 = pexConfig.ListField(
162 dtype=float,
163 default=[-0],
164 doc="Center position for the fringe ripples.",
165 )
166
167 # Inclusion parameters
168 doAddSky = pexConfig.Field(
169 dtype=bool,
170 default=True,
171 doc="Apply 'sky' signal to output image.",
172 )
173 doAddSource = pexConfig.Field(
174 dtype=bool,
175 default=True,
176 doc="Add simulated source to output image.",
177 )
178 doAddCrosstalk = pexConfig.Field(
179 dtype=bool,
180 default=False,
181 doc="Apply simulated crosstalk to output image. This cannot be corrected by ISR, "
182 "as detector.hasCrosstalk()==False.",
183 )
184 doAddOverscan = pexConfig.Field(
185 dtype=bool,
186 default=True,
187 doc="If untrimmed, add overscan ramp to overscan and data regions.",
188 )
189 doAddBias = pexConfig.Field(
190 dtype=bool,
191 default=True,
192 doc="Add bias signal to data.",
193 )
194 doAddDark = pexConfig.Field(
195 dtype=bool,
196 default=True,
197 doc="Add dark signal to data.",
198 )
199 doAddFlat = pexConfig.Field(
200 dtype=bool,
201 default=True,
202 doc="Add flat signal to data.",
203 )
204 doAddFringe = pexConfig.Field(
205 dtype=bool,
206 default=True,
207 doc="Add fringe signal to data.",
208 )
209
210 # Datasets to create and return instead of generating an image.
211 doTransmissionCurve = pexConfig.Field(
212 dtype=bool,
213 default=False,
214 doc="Return a simulated transmission curve.",
215 )
216 doDefects = pexConfig.Field(
217 dtype=bool,
218 default=False,
219 doc="Return a simulated defect list.",
220 )
221 doBrighterFatter = pexConfig.Field(
222 dtype=bool,
223 default=False,
224 doc="Return a simulated brighter-fatter kernel.",
225 )
226 doCrosstalkCoeffs = pexConfig.Field(
227 dtype=bool,
228 default=False,
229 doc="Return the matrix of crosstalk coefficients.",
230 )
231 doDataRef = pexConfig.Field(
232 dtype=bool,
233 default=False,
234 doc="Return a simulated gen2 butler dataRef.",
235 )
236 doGenerateImage = pexConfig.Field(
237 dtype=bool,
238 default=False,
239 doc="Return the generated output image if True.",
240 )
241 doGenerateData = pexConfig.Field(
242 dtype=bool,
243 default=False,
244 doc="Return a non-image data structure if True.",
245 )
246 doGenerateAmpDict = pexConfig.Field(
247 dtype=bool,
248 default=False,
249 doc="Return a dict of exposure amplifiers instead of an afwImage.Exposure.",
250 )
251
252
253class IsrMock(pipeBase.Task):
254 """Class to generate consistent mock images for ISR testing.
255
256 ISR testing currently relies on one-off fake images that do not
257 accurately mimic the full set of detector effects. This class
258 uses the test camera/detector/amplifier structure defined in
259 `lsst.afw.cameraGeom.testUtils` to avoid making the test data
260 dependent on any of the actual obs package formats.
261 """
262 ConfigClass = IsrMockConfig
263 _DefaultName = "isrMock"
264
265 def __init__(self, **kwargs):
266 super().__init__(**kwargs)
267 self.rngrng = np.random.RandomState(self.config.rngSeed)
268 self.crosstalkCoeffscrosstalkCoeffs = np.array([[0.0, 0.0, 0.0, 0.0, 0.0, -1e-3, 0.0, 0.0],
269 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
270 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
271 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
272 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
273 [1e-2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
274 [1e-2, 0.0, 0.0, 2.2e-2, 0.0, 0.0, 0.0, 0.0],
275 [1e-2, 5e-3, 5e-4, 3e-3, 4e-2, 5e-3, 5e-3, 0.0]])
276
277 self.bfKernelbfKernel = np.array([[1., 4., 7., 4., 1.],
278 [4., 16., 26., 16., 4.],
279 [7., 26., 41., 26., 7.],
280 [4., 16., 26., 16., 4.],
281 [1., 4., 7., 4., 1.]]) / 273.0
282
283 def run(self):
284 """Generate a mock ISR product, and return it.
285
286 Returns
287 -------
289 Simulated ISR image with signals added.
290 dataProduct :
291 Simulated ISR data products.
292 None :
293 Returned if no valid configuration was found.
294
295 Raises
296 ------
297 RuntimeError
298 Raised if both doGenerateImage and doGenerateData are specified.
299 """
300 if self.config.doGenerateImage and self.config.doGenerateData:
301 raise RuntimeError("Only one of doGenerateImage and doGenerateData may be specified.")
302 elif self.config.doGenerateImage:
303 return self.makeImagemakeImage()
304 elif self.config.doGenerateData:
305 return self.makeDatamakeData()
306 else:
307 return None
308
309 def makeData(self):
310 """Generate simulated ISR data.
311
312 Currently, only the class defined crosstalk coefficient
313 matrix, brighter-fatter kernel, a constant unity transmission
314 curve, or a simple single-entry defect list can be generated.
315
316 Returns
317 -------
318 dataProduct :
319 Simulated ISR data product.
320 """
321 if sum(map(bool, [self.config.doBrighterFatter,
322 self.config.doDefects,
323 self.config.doTransmissionCurve,
324 self.config.doCrosstalkCoeffs])) != 1:
325 raise RuntimeError("Only one data product can be generated at a time.")
326 elif self.config.doBrighterFatter is True:
327 return self.makeBfKernelmakeBfKernel()
328 elif self.config.doDefects is True:
329 return self.makeDefectListmakeDefectList()
330 elif self.config.doTransmissionCurve is True:
331 return self.makeTransmissionCurvemakeTransmissionCurve()
332 elif self.config.doCrosstalkCoeffs is True:
333 return self.crosstalkCoeffscrosstalkCoeffs
334 else:
335 return None
336
337 def makeBfKernel(self):
338 """Generate a simple Gaussian brighter-fatter kernel.
339
340 Returns
341 -------
342 kernel : `numpy.ndarray`
343 Simulated brighter-fatter kernel.
344 """
345 return self.bfKernelbfKernel
346
347 def makeDefectList(self):
348 """Generate a simple single-entry defect list.
349
350 Returns
351 -------
352 defectList : `lsst.meas.algorithms.Defects`
353 Simulated defect list
354 """
356 lsst.geom.Extent2I(40, 50))])
357
359 """Generate the simulated crosstalk coefficients.
360
361 Returns
362 -------
363 coeffs : `numpy.ndarray`
364 Simulated crosstalk coefficients.
365 """
366
367 return self.crosstalkCoeffscrosstalkCoeffs
368
370 """Generate a simulated flat transmission curve.
371
372 Returns
373 -------
374 transmission : `lsst.afw.image.TransmissionCurve`
375 Simulated transmission curve.
376 """
377
378 return afwImage.TransmissionCurve.makeIdentity()
379
380 def makeImage(self):
381 """Generate a simulated ISR image.
382
383 Returns
384 -------
385 exposure : `lsst.afw.image.Exposure` or `dict`
386 Simulated ISR image data.
387
388 Notes
389 -----
390 This method currently constructs a "raw" data image by:
391 * Generating a simulated sky with noise
392 * Adding a single Gaussian "star"
393 * Adding the fringe signal
394 * Multiplying the frame by the simulated flat
395 * Adding dark current (and noise)
396 * Adding a bias offset (and noise)
397 * Adding an overscan gradient parallel to the pixel y-axis
398 * Simulating crosstalk by adding a scaled version of each
399 amplifier to each other amplifier.
400
401 The exposure with image data constructed this way is in one of
402 three formats.
403 * A single image, with overscan and prescan regions retained
404 * A single image, with overscan and prescan regions trimmed
405 * A `dict`, containing the amplifer data indexed by the
406 amplifier name.
407
408 The nonlinearity, CTE, and brighter fatter are currently not
409 implemented.
410
411 Note that this method generates an image in the reverse
412 direction as the ISR processing, as the output image here has
413 had a series of instrument effects added to an idealized
414 exposure.
415 """
416 exposure = self.getExposuregetExposure()
417
418 for idx, amp in enumerate(exposure.getDetector()):
419 bbox = None
420 if self.config.isTrimmed is True:
421 bbox = amp.getBBox()
422 else:
423 bbox = amp.getRawDataBBox()
424
425 ampData = exposure.image[bbox]
426
427 if self.config.doAddSky is True:
428 self.amplifierAddNoiseamplifierAddNoise(ampData, self.config.skyLevel, np.sqrt(self.config.skyLevel))
429
430 if self.config.doAddSource is True:
431 for sourceAmp, sourceFlux, sourceX, sourceY in zip(self.config.sourceAmp,
432 self.config.sourceFlux,
433 self.config.sourceX,
434 self.config.sourceY):
435 if idx == sourceAmp:
436 self.amplifierAddSourceamplifierAddSource(ampData, sourceFlux, sourceX, sourceY)
437
438 if self.config.doAddFringe is True:
439 self.amplifierAddFringeamplifierAddFringe(amp, ampData, np.array(self.config.fringeScale),
440 x0=np.array(self.config.fringeX0),
441 y0=np.array(self.config.fringeY0))
442
443 if self.config.doAddFlat is True:
444 if ampData.getArray().sum() == 0.0:
445 self.amplifierAddNoiseamplifierAddNoise(ampData, 1.0, 0.0)
446 u0 = exposure.getDimensions().getX()
447 v0 = exposure.getDimensions().getY()
448 self.amplifierMultiplyFlatamplifierMultiplyFlat(amp, ampData, self.config.flatDrop, u0=u0, v0=v0)
449
450 if self.config.doAddDark is True:
451 self.amplifierAddNoiseamplifierAddNoise(ampData,
452 self.config.darkRate * self.config.darkTime / self.config.gain,
453 np.sqrt(self.config.darkRate
454 * self.config.darkTime / self.config.gain))
455
456 if self.config.doAddCrosstalk is True:
457 ctCalib = CrosstalkCalib()
458 for idxS, ampS in enumerate(exposure.getDetector()):
459 for idxT, ampT in enumerate(exposure.getDetector()):
460 ampDataT = exposure.image[ampT.getBBox()
461 if self.config.isTrimmed else ampT.getRawDataBBox()]
462 outAmp = ctCalib.extractAmp(exposure.getImage(), ampS, ampT,
463 isTrimmed=self.config.isTrimmed)
464 self.amplifierAddCTamplifierAddCT(outAmp, ampDataT, self.crosstalkCoeffscrosstalkCoeffs[idxT][idxS])
465
466 for amp in exposure.getDetector():
467 bbox = None
468 if self.config.isTrimmed is True:
469 bbox = amp.getBBox()
470 else:
471 bbox = amp.getRawDataBBox()
472
473 ampData = exposure.image[bbox]
474
475 if self.config.doAddBias is True:
476 self.amplifierAddNoiseamplifierAddNoise(ampData, self.config.biasLevel,
477 self.config.readNoise / self.config.gain)
478
479 if self.config.doAddOverscan is True:
480 oscanBBox = amp.getRawHorizontalOverscanBBox()
481 oscanData = exposure.image[oscanBBox]
482 self.amplifierAddNoiseamplifierAddNoise(oscanData, self.config.biasLevel,
483 self.config.readNoise / self.config.gain)
484
485 self.amplifierAddYGradientamplifierAddYGradient(ampData, -1.0 * self.config.overscanScale,
486 1.0 * self.config.overscanScale)
487 self.amplifierAddYGradientamplifierAddYGradient(oscanData, -1.0 * self.config.overscanScale,
488 1.0 * self.config.overscanScale)
489
490 if self.config.doGenerateAmpDict is True:
491 expDict = dict()
492 for amp in exposure.getDetector():
493 expDict[amp.getName()] = exposure
494 return expDict
495 else:
496 return exposure
497
498 # afw primatives to construct the image structure
499 def getCamera(self):
500 """Construct a test camera object.
501
502 Returns
503 -------
504 camera : `lsst.afw.cameraGeom.camera`
505 Test camera.
506 """
507 cameraWrapper = afwTestUtils.CameraWrapper(
508 plateScale=self.config.plateScale,
509 radialDistortion=self.config.radialDistortion,
510 isLsstLike=self.config.isLsstLike,
511 )
512 camera = cameraWrapper.camera
513 return camera
514
515 def getExposure(self):
516 """Construct a test exposure.
517
518 The test exposure has a simple WCS set, as well as a list of
519 unlikely header keywords that can be removed during ISR
520 processing to exercise that code.
521
522 Returns
523 -------
524 exposure : `lsst.afw.exposure.Exposure`
525 Construct exposure containing masked image of the
526 appropriate size.
527 """
528 camera = self.getCameragetCamera()
529 detector = camera[self.config.detectorIndex]
530 image = afwUtils.makeImageFromCcd(detector,
531 isTrimmed=self.config.isTrimmed,
532 showAmpGain=False,
533 rcMarkSize=0,
534 binSize=1,
535 imageFactory=afwImage.ImageF)
536
537 var = afwImage.ImageF(image.getDimensions())
538 mask = afwImage.Mask(image.getDimensions())
539 image.assign(0.0)
540
541 maskedImage = afwImage.makeMaskedImage(image, mask, var)
542 exposure = afwImage.makeExposure(maskedImage)
543 exposure.setDetector(detector)
544 exposure.setWcs(self.getWcsgetWcs())
545
546 visitInfo = afwImage.VisitInfo(exposureTime=self.config.expTime, darkTime=self.config.darkTime)
547 exposure.getInfo().setVisitInfo(visitInfo)
548
549 metadata = exposure.getMetadata()
550 metadata.add("SHEEP", 7.3, "number of sheep on farm")
551 metadata.add("MONKEYS", 155, "monkeys per tree")
552 metadata.add("VAMPIRES", 4, "How scary are vampires.")
553
554 ccd = exposure.getDetector()
555 newCcd = ccd.rebuild()
556 newCcd.clear()
557 for amp in ccd:
558 newAmp = amp.rebuild()
559 newAmp.setLinearityCoeffs((0., 1., 0., 0.))
560 newAmp.setLinearityType("Polynomial")
561 newAmp.setGain(self.config.gain)
562 newAmp.setSuspectLevel(25000.0)
563 newAmp.setSaturation(32000.0)
564 newCcd.append(newAmp)
565 exposure.setDetector(newCcd.finish())
566
567 exposure.image.array[:] = np.zeros(exposure.getImage().getDimensions()).transpose()
568 exposure.mask.array[:] = np.zeros(exposure.getMask().getDimensions()).transpose()
569 exposure.variance.array[:] = np.zeros(exposure.getVariance().getDimensions()).transpose()
570
571 return exposure
572
573 def getWcs(self):
574 """Construct a dummy WCS object.
575
576 Taken from the deprecated ip_isr/examples/exampleUtils.py.
577
578 This is not guaranteed, given the distortion and pixel scale
579 listed in the afwTestUtils camera definition.
580
581 Returns
582 -------
584 Test WCS transform.
585 """
586 return afwGeom.makeSkyWcs(crpix=lsst.geom.Point2D(0.0, 100.0),
587 crval=lsst.geom.SpherePoint(45.0, 25.0, lsst.geom.degrees),
588 cdMatrix=afwGeom.makeCdMatrix(scale=1.0*lsst.geom.degrees))
589
590 def localCoordToExpCoord(self, ampData, x, y):
591 """Convert between a local amplifier coordinate and the full
592 exposure coordinate.
593
594 Parameters
595 ----------
596 ampData : `lsst.afw.image.ImageF`
597 Amplifier image to use for conversions.
598 x : `int`
599 X-coordinate of the point to transform.
600 y : `int`
601 Y-coordinate of the point to transform.
602
603 Returns
604 -------
605 u : `int`
606 Transformed x-coordinate.
607 v : `int`
608 Transformed y-coordinate.
609
610 Notes
611 -----
612 The output is transposed intentionally here, to match the
613 internal transpose between numpy and afw.image coordinates.
614 """
615 u = x + ampData.getBBox().getBeginX()
616 v = y + ampData.getBBox().getBeginY()
617
618 return (v, u)
619
620 # Simple data values.
621 def amplifierAddNoise(self, ampData, mean, sigma):
622 """Add Gaussian noise to an amplifier's image data.
623
624 This method operates in the amplifier coordinate frame.
625
626 Parameters
627 ----------
628 ampData : `lsst.afw.image.ImageF`
629 Amplifier image to operate on.
630 mean : `float`
631 Mean value of the Gaussian noise.
632 sigma : `float`
633 Sigma of the Gaussian noise.
634 """
635 ampArr = ampData.array
636 ampArr[:] = ampArr[:] + self.rngrng.normal(mean, sigma,
637 size=ampData.getDimensions()).transpose()
638
639 def amplifierAddYGradient(self, ampData, start, end):
640 """Add a y-axis linear gradient to an amplifier's image data.
641
642 This method operates in the amplifier coordinate frame.
643
644 Parameters
645 ----------
646 ampData : `lsst.afw.image.ImageF`
647 Amplifier image to operate on.
648 start : `float`
649 Start value of the gradient (at y=0).
650 end : `float`
651 End value of the gradient (at y=ymax).
652 """
653 nPixY = ampData.getDimensions().getY()
654 ampArr = ampData.array
655 ampArr[:] = ampArr[:] + (np.interp(range(nPixY), (0, nPixY - 1), (start, end)).reshape(nPixY, 1)
656 + np.zeros(ampData.getDimensions()).transpose())
657
658 def amplifierAddSource(self, ampData, scale, x0, y0):
659 """Add a single Gaussian source to an amplifier.
660
661 This method operates in the amplifier coordinate frame.
662
663 Parameters
664 ----------
665 ampData : `lsst.afw.image.ImageF`
666 Amplifier image to operate on.
667 scale : `float`
668 Peak flux of the source to add.
669 x0 : `float`
670 X-coordinate of the source peak.
671 y0 : `float`
672 Y-coordinate of the source peak.
673 """
674 for x in range(0, ampData.getDimensions().getX()):
675 for y in range(0, ampData.getDimensions().getY()):
676 ampData.array[y][x] = (ampData.array[y][x]
677 + scale * np.exp(-0.5 * ((x - x0)**2 + (y - y0)**2) / 3.0**2))
678
679 def amplifierAddCT(self, ampDataSource, ampDataTarget, scale):
680 """Add a scaled copy of an amplifier to another, simulating crosstalk.
681
682 This method operates in the amplifier coordinate frame.
683
684 Parameters
685 ----------
686 ampDataSource : `lsst.afw.image.ImageF`
687 Amplifier image to add scaled copy from.
688 ampDataTarget : `lsst.afw.image.ImageF`
689 Amplifier image to add scaled copy to.
690 scale : `float`
691 Flux scale of the copy to add to the target.
692
693 Notes
694 -----
695 This simulates simple crosstalk between amplifiers.
696 """
697 ampDataTarget.array[:] = (ampDataTarget.array[:]
698 + scale * ampDataSource.array[:])
699
700 # Functional form data values.
701 def amplifierAddFringe(self, amp, ampData, scale, x0=100, y0=0):
702 """Add a fringe-like ripple pattern to an amplifier's image data.
703
704 Parameters
705 ----------
706 amp : `~lsst.afw.ampInfo.AmpInfoRecord`
707 Amplifier to operate on. Needed for amp<->exp coordinate
708 transforms.
709 ampData : `lsst.afw.image.ImageF`
710 Amplifier image to operate on.
711 scale : `numpy.array` or `float`
712 Peak intensity scaling for the ripple.
713 x0 : `numpy.array` or `float`, optional
714 Fringe center
715 y0 : `numpy.array` or `float`, optional
716 Fringe center
717
718 Notes
719 -----
720 This uses an offset sinc function to generate a ripple
721 pattern. True fringes have much finer structure, but this
722 pattern should be visually identifiable. The (x, y)
723 coordinates are in the frame of the amplifier, and (u, v) in
724 the frame of the full trimmed image.
725 """
726 for x in range(0, ampData.getDimensions().getX()):
727 for y in range(0, ampData.getDimensions().getY()):
728 (u, v) = self.localCoordToExpCoordlocalCoordToExpCoord(amp, x, y)
729 ampData.getArray()[y][x] = np.sum((ampData.getArray()[y][x]
730 + scale * np.sinc(((u - x0) / 50)**2
731 + ((v - y0) / 50)**2)))
732
733 def amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0):
734 """Multiply an amplifier's image data by a flat-like pattern.
735
736 Parameters
737 ----------
738 amp : `lsst.afw.ampInfo.AmpInfoRecord`
739 Amplifier to operate on. Needed for amp<->exp coordinate
740 transforms.
741 ampData : `lsst.afw.image.ImageF`
742 Amplifier image to operate on.
743 fracDrop : `float`
744 Fractional drop from center to edge of detector along x-axis.
745 u0 : `float`
746 Peak location in detector coordinates.
747 v0 : `float`
748 Peak location in detector coordinates.
749
750 Notes
751 -----
752 This uses a 2-d Gaussian to simulate an illumination pattern
753 that falls off towards the edge of the detector. The (x, y)
754 coordinates are in the frame of the amplifier, and (u, v) in
755 the frame of the full trimmed image.
756 """
757 if fracDrop >= 1.0:
758 raise RuntimeError("Flat fractional drop cannot be greater than 1.0")
759
760 sigma = u0 / np.sqrt(-2.0 * np.log(fracDrop))
761
762 for x in range(0, ampData.getDimensions().getX()):
763 for y in range(0, ampData.getDimensions().getY()):
764 (u, v) = self.localCoordToExpCoordlocalCoordToExpCoord(amp, x, y)
765 f = np.exp(-0.5 * ((u - u0)**2 + (v - v0)**2) / sigma**2)
766 ampData.array[y][x] = (ampData.array[y][x] * f)
767
768
770 """Generate a raw exposure suitable for ISR.
771 """
772 def __init__(self, **kwargs):
773 super().__init__(**kwargs)
774 self.config.isTrimmed = False
775 self.config.doGenerateImage = True
776 self.config.doGenerateAmpDict = False
777 self.config.doAddOverscan = True
778 self.config.doAddSky = True
779 self.config.doAddSource = True
780 self.config.doAddCrosstalk = False
781 self.config.doAddBias = True
782 self.config.doAddDark = True
783
784
786 """Generate a trimmed raw exposure.
787 """
788 def __init__(self, **kwargs):
789 super().__init__(**kwargs)
790 self.config.isTrimmed = True
791 self.config.doAddOverscan = False
792
793
795 """Generate a trimmed raw exposure.
796 """
797 def __init__(self, **kwargs):
798 super().__init__(**kwargs)
799 self.config.isTrimmed = True
800 self.config.doGenerateImage = True
801 self.config.doAddOverscan = False
802 self.config.doAddSky = True
803 self.config.doAddSource = True
804 self.config.doAddCrosstalk = False
805
806 self.config.doAddBias = False
807 self.config.doAddDark = False
808 self.config.doAddFlat = False
809 self.config.doAddFringe = True
810
811 self.config.biasLevel = 0.0
812 self.config.readNoise = 10.0
813
814
816 """Generate a raw exposure dict suitable for ISR.
817 """
818 def __init__(self, **kwargs):
819 super().__init__(**kwargs)
820 self.config.doGenerateAmpDict = True
821
822
824 """Parent class for those that make master calibrations.
825 """
826 def __init__(self, **kwargs):
827 super().__init__(**kwargs)
828 self.config.isTrimmed = True
829 self.config.doGenerateImage = True
830 self.config.doAddOverscan = False
831 self.config.doAddSky = False
832 self.config.doAddSource = False
833 self.config.doAddCrosstalk = False
834
835 self.config.doAddBias = False
836 self.config.doAddDark = False
837 self.config.doAddFlat = False
838 self.config.doAddFringe = False
839
840
842 """Simulated master bias calibration.
843 """
844 def __init__(self, **kwargs):
845 super().__init__(**kwargs)
846 self.config.doAddBias = True
847 self.config.readNoise = 10.0
848
849
851 """Simulated master dark calibration.
852 """
853 def __init__(self, **kwargs):
854 super().__init__(**kwargs)
855 self.config.doAddDark = True
856 self.config.darkTime = 1.0
857
858
860 """Simulated master flat calibration.
861 """
862 def __init__(self, **kwargs):
863 super().__init__(**kwargs)
864 self.config.doAddFlat = True
865
866
868 """Simulated master fringe calibration.
869 """
870 def __init__(self, **kwargs):
871 super().__init__(**kwargs)
872 self.config.doAddFringe = True
873
874
876 """Simulated untrimmed master fringe calibration.
877 """
878 def __init__(self, **kwargs):
879 super().__init__(**kwargs)
880 self.config.isTrimmed = False
881
882
884 """Simulated brighter-fatter kernel.
885 """
886 def __init__(self, **kwargs):
887 super().__init__(**kwargs)
888 self.config.doGenerateImage = False
889 self.config.doGenerateData = True
890 self.config.doBrighterFatter = True
891 self.config.doDefects = False
892 self.config.doCrosstalkCoeffs = False
893 self.config.doTransmissionCurve = False
894
895
897 """Simulated defect list.
898 """
899 def __init__(self, **kwargs):
900 super().__init__(**kwargs)
901 self.config.doGenerateImage = False
902 self.config.doGenerateData = True
903 self.config.doBrighterFatter = False
904 self.config.doDefects = True
905 self.config.doCrosstalkCoeffs = False
906 self.config.doTransmissionCurve = False
907
908
910 """Simulated crosstalk coefficient matrix.
911 """
912 def __init__(self, **kwargs):
913 super().__init__(**kwargs)
914 self.config.doGenerateImage = False
915 self.config.doGenerateData = True
916 self.config.doBrighterFatter = False
917 self.config.doDefects = False
918 self.config.doCrosstalkCoeffs = True
919 self.config.doTransmissionCurve = False
920
921
923 """Simulated transmission curve.
924 """
925 def __init__(self, **kwargs):
926 super().__init__(**kwargs)
927 self.config.doGenerateImage = False
928 self.config.doGenerateData = True
929 self.config.doBrighterFatter = False
930 self.config.doDefects = False
931 self.config.doCrosstalkCoeffs = False
932 self.config.doTransmissionCurve = True
933
934
936 """Simulated gen2 butler data ref.
937
938 Currently only supports get and put operations, which are most
939 likely to be called for data in ISR processing.
940
941 """
942 dataId = "isrMock Fake Data"
943 darkval = 2. # e-/sec
944 oscan = 250. # DN
945 gradient = .10
946 exptime = 15.0 # seconds
947 darkexptime = 15.0 # seconds
948
949 def __init__(self, **kwargs):
950 if 'config' in kwargs.keys():
951 self.configconfig = kwargs['config']
952 else:
953 self.configconfig = None
954
955 def expectImage(self):
956 if self.configconfig is None:
957 self.configconfig = IsrMockConfig()
958 self.configconfig.doGenerateImage = True
959 self.configconfig.doGenerateData = False
960
961 def expectData(self):
962 if self.configconfig is None:
963 self.configconfig = IsrMockConfig()
964 self.configconfig.doGenerateImage = False
965 self.configconfig.doGenerateData = True
966
967 def get(self, dataType, **kwargs):
968 """Return an appropriate data product.
969
970 Parameters
971 ----------
972 dataType : `str`
973 Type of data product to return.
974
975 Returns
976 -------
977 mock : IsrMock.run() result
978 The output product.
979 """
980 if "_filename" in dataType:
981 self.expectDataexpectData()
982 return tempfile.mktemp(), "mock"
983 elif 'transmission_' in dataType:
984 self.expectDataexpectData()
985 return TransmissionMock(config=self.configconfig).run()
986 elif dataType == 'ccdExposureId':
987 self.expectDataexpectData()
988 return 20090913
989 elif dataType == 'camera':
990 self.expectDataexpectData()
991 return IsrMock(config=self.configconfig).getCamera()
992 elif dataType == 'raw':
993 self.expectImageexpectImage()
994 return RawMock(config=self.configconfig).run()
995 elif dataType == 'bias':
996 self.expectImageexpectImage()
997 return BiasMock(config=self.configconfig).run()
998 elif dataType == 'dark':
999 self.expectImageexpectImage()
1000 return DarkMock(config=self.configconfig).run()
1001 elif dataType == 'flat':
1002 self.expectImageexpectImage()
1003 return FlatMock(config=self.configconfig).run()
1004 elif dataType == 'fringe':
1005 self.expectImageexpectImage()
1006 return FringeMock(config=self.configconfig).run()
1007 elif dataType == 'defects':
1008 self.expectDataexpectData()
1009 return DefectMock(config=self.configconfig).run()
1010 elif dataType == 'bfKernel':
1011 self.expectDataexpectData()
1012 return BfKernelMock(config=self.configconfig).run()
1013 elif dataType == 'linearizer':
1014 return None
1015 elif dataType == 'crosstalkSources':
1016 return None
1017 else:
1018 raise RuntimeError("ISR DataRefMock cannot return %s.", dataType)
1019
1020 def put(self, exposure, filename):
1021 """Write an exposure to a FITS file.
1022
1023 Parameters
1024 ----------
1025 exposure : `lsst.afw.image.Exposure`
1026 Image data to write out.
1027 filename : `str`
1028 Base name of the output file.
1029 """
1030 exposure.writeFits(filename+".fits")
1031
1032
1034 """Simulated gen2 butler data ref.
1035
1036 Currently only supports get and put operations, which are most
1037 likely to be called for data in ISR processing.
1038
1039 """
1040 dataId = "isrMock Fake Data"
1041 darkval = 2. # e-/sec
1042 oscan = 250. # DN
1043 gradient = .10
1044 exptime = 15 # seconds
1045 darkexptime = 40. # seconds
1046
1047 def __init__(self, **kwargs):
1048 if 'config' in kwargs.keys():
1049 self.configconfig = kwargs['config']
1050 else:
1051 self.configconfig = IsrMockConfig()
1052 self.configconfig.isTrimmed = True
1053 self.configconfig.doAddFringe = True
1054 self.configconfig.readNoise = 10.0
1055
1056 def get(self, dataType, **kwargs):
1057 """Return an appropriate data product.
1058
1059 Parameters
1060 ----------
1061 dataType : `str`
1062 Type of data product to return.
1063
1064 Returns
1065 -------
1066 mock : IsrMock.run() result
1067 The output product.
1068 """
1069 if "_filename" in dataType:
1070 return tempfile.mktemp(), "mock"
1071 elif 'transmission_' in dataType:
1072 return TransmissionMock(config=self.configconfig).run()
1073 elif dataType == 'ccdExposureId':
1074 return 20090913
1075 elif dataType == 'camera':
1076 return IsrMock(config=self.configconfig).getCamera()
1077 elif dataType == 'raw':
1078 return CalibratedRawMock(config=self.configconfig).run()
1079 elif dataType == 'bias':
1080 return BiasMock(config=self.configconfig).run()
1081 elif dataType == 'dark':
1082 return DarkMock(config=self.configconfig).run()
1083 elif dataType == 'flat':
1084 return FlatMock(config=self.configconfig).run()
1085 elif dataType == 'fringe':
1086 fringes = []
1087 configCopy = copy.deepcopy(self.configconfig)
1088 for scale, x, y in zip(self.configconfig.fringeScale, self.configconfig.fringeX0, self.configconfig.fringeY0):
1089 configCopy.fringeScale = [1.0]
1090 configCopy.fringeX0 = [x]
1091 configCopy.fringeY0 = [y]
1092 fringes.append(FringeMock(config=configCopy).run())
1093 return fringes
1094 elif dataType == 'defects':
1095 return DefectMock(config=self.configconfig).run()
1096 elif dataType == 'bfKernel':
1097 return BfKernelMock(config=self.configconfig).run()
1098 elif dataType == 'linearizer':
1099 return None
1100 elif dataType == 'crosstalkSources':
1101 return None
1102 else:
1103 return None
1104
1105 def put(self, exposure, filename):
1106 """Write an exposure to a FITS file.
1107
1108 Parameters
1109 ----------
1110 exposure : `lsst.afw.image.Exposure`
1111 Image data to write out.
1112 filename : `str`
1113 Base name of the output file.
1114 """
1115 exposure.writeFits(filename+".fits")
table::Key< table::Array< float > > crosstalk
Definition: Detector.cc:173
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition: SkyWcs.h:117
A class to contain the data, WCS, and other information needed to describe an image of the sky.
Definition: Exposure.h:72
Represent a 2-dimensional array of bitmask pixels.
Definition: Mask.h:77
A spatially-varying transmission curve as a function of wavelength.
Information about a single exposure of an imaging camera.
Definition: VisitInfo.h:68
An integer coordinate rectangle.
Definition: Box.h:55
Point in an unspecified spherical coordinate system.
Definition: SpherePoint.h:57
def __init__(self, **kwargs)
Definition: isrMock.py:886
def __init__(self, **kwargs)
Definition: isrMock.py:844
def __init__(self, **kwargs)
Definition: isrMock.py:853
def put(self, exposure, filename)
Definition: isrMock.py:1020
def get(self, dataType, **kwargs)
Definition: isrMock.py:967
def __init__(self, **kwargs)
Definition: isrMock.py:949
def __init__(self, **kwargs)
Definition: isrMock.py:899
def __init__(self, **kwargs)
Definition: isrMock.py:862
def put(self, exposure, filename)
Definition: isrMock.py:1105
def get(self, dataType, **kwargs)
Definition: isrMock.py:1056
def __init__(self, **kwargs)
Definition: isrMock.py:870
def amplifierAddSource(self, ampData, scale, x0, y0)
Definition: isrMock.py:658
def __init__(self, **kwargs)
Definition: isrMock.py:265
def amplifierAddNoise(self, ampData, mean, sigma)
Definition: isrMock.py:621
def amplifierAddYGradient(self, ampData, start, end)
Definition: isrMock.py:639
def amplifierAddCT(self, ampDataSource, ampDataTarget, scale)
Definition: isrMock.py:679
def amplifierMultiplyFlat(self, amp, ampData, fracDrop, u0=100.0, v0=100.0)
Definition: isrMock.py:733
def amplifierAddFringe(self, amp, ampData, scale, x0=100, y0=0)
Definition: isrMock.py:701
def localCoordToExpCoord(self, ampData, x, y)
Definition: isrMock.py:590
def __init__(self, **kwargs)
Definition: isrMock.py:826
def __init__(self, **kwargs)
Definition: isrMock.py:818
def __init__(self, **kwargs)
Definition: isrMock.py:772
def __init__(self, **kwargs)
Definition: isrMock.py:788
std::shared_ptr< SkyWcs > makeSkyWcs(daf::base::PropertySet &metadata, bool strip=false)
Construct a SkyWcs from FITS keywords.
Definition: SkyWcs.cc:521
Eigen::Matrix2d makeCdMatrix(lsst::geom::Angle const &scale, lsst::geom::Angle const &orientation=0 *lsst::geom::degrees, bool flipX=false)
Make a WCS CD matrix.
Definition: SkyWcs.cc:133
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > * makeMaskedImage(typename std::shared_ptr< Image< ImagePixelT > > image, typename std::shared_ptr< Mask< MaskPixelT > > mask=Mask< MaskPixelT >(), typename std::shared_ptr< Image< VariancePixelT > > variance=Image< VariancePixelT >())
A function to return a MaskedImage of the correct type (cf.
Definition: MaskedImage.h:1240
std::shared_ptr< Exposure< ImagePixelT, MaskPixelT, VariancePixelT > > makeExposure(MaskedImage< ImagePixelT, MaskPixelT, VariancePixelT > &mimage, std::shared_ptr< geom::SkyWcs const > wcs=std::shared_ptr< geom::SkyWcs const >())
A function to return an Exposure of the correct type (cf.
Definition: Exposure.h:454
def run(self, coaddExposures, bbox, wcs, dataIds, **kwargs)
Definition: getTemplate.py:596
bool defined
Definition: slots.cc:27