LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
|
Namespaces | |
namespace | cmodel |
namespace | common |
namespace | detail |
namespace | display |
namespace | optimizer |
namespace | pixelFitRegion |
namespace | priors |
namespace | psf |
namespace | version |
Classes | |
class | AdaptiveImportanceSampler |
Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distribution from which points are drawn. More... | |
class | CModelAlgorithm |
Main public interface class for CModel algorithm. More... | |
struct | CModelControl |
The main control object for CModel, containing parameters for the final linear fit and aggregating the other control objects. More... | |
struct | CModelResult |
Master result object for CModel, containing results for the final linear fit and three nested CModelStageResult objects for the results of the previous stages. More... | |
struct | CModelStageControl |
Nested control object for CModel that configures one of the three ("initial", "exp", "dev") nonlinear fitting stages. More... | |
struct | CModelStageResult |
Result object for a single nonlinear fitting stage of the CModel algorithm. More... | |
class | DoubleShapeletPsfApproxAlgorithm |
An algorithm that fits a 2-component shapelet approximation to the PSF model. More... | |
class | DoubleShapeletPsfApproxControl |
Control object used to configure a 2-shapelet fit to a PSF model; see DoubleShapeletPsfApproxAlgorithm. More... | |
class | EpochFootprint |
An image at one epoch of a galaxy, plus associated info. More... | |
class | GeneralPsfFitter |
Class for fitting multishapelet models to PSF images. More... | |
class | GeneralPsfFitterAlgorithm |
class | GeneralPsfFitterComponentControl |
Control object used to define one piece of multishapelet fit to a PSF model; see GeneralPsfFitterControl. More... | |
class | GeneralPsfFitterControl |
Control object used to configure a multishapelet fit to a PSF model; see GeneralPsfFitter. More... | |
class | ImportanceSamplerControl |
Control object for one iteration of adaptive importance sampling. More... | |
class | Likelihood |
Base class for optimizer/sampler likelihood functions that compute likelihood at a point. More... | |
struct | LocalUnitTransform |
A local mapping between two UnitSystems. More... | |
class | Mixture |
class | MixtureComponent |
A weighted Student's T or Gaussian distribution used as a component in a Mixture. More... | |
class | MixturePrior |
A prior that's flat in amplitude parameters, and uses a Mixture for nonlinear parameters. More... | |
class | MixtureUpdateRestriction |
Helper class used to define restrictions to the form of the component parameters in Mixture::updateEM. More... | |
class | Model |
Abstract base class and concrete factories that define multi-shapelet galaxy models. More... | |
class | MultiModel |
A concrete Model class that simply concatenates several other Models. More... | |
class | MultiShapeletPsfLikelihood |
Likelihood object used to fit multishapelet models to PSF model images; mostly for internal use by GeneralPsfFitter. More... | |
class | Optimizer |
A numerical optimizer customized for least-squares problems with Bayesian priors. More... | |
class | OptimizerControl |
Configuration object for Optimizer. More... | |
class | OptimizerHistoryRecorder |
class | OptimizerObjective |
Base class for objective functions for Optimizer. More... | |
class | PixelFitRegion |
struct | PixelFitRegionControl |
class | Prior |
Base class for Bayesian priors. More... | |
class | Sampler |
class | SamplingObjective |
class | SemiEmpiricalPrior |
A piecewise prior motivated by both real distributions and practical considerations. More... | |
struct | SemiEmpiricalPriorControl |
class | SoftenedLinearPrior |
A prior that's linear in radius and flat in ellipticity, with a cubic roll-off at the edges. More... | |
struct | SoftenedLinearPriorControl |
class | TruncatedGaussian |
Represents a multidimensional Gaussian function truncated at zero. More... | |
class | TruncatedGaussianEvaluator |
Helper class for evaluating the -log of a TruncatedGaussian. More... | |
class | TruncatedGaussianLogEvaluator |
Helper class for evaluating the -log of a TruncatedGaussian. More... | |
class | TruncatedGaussianSampler |
Helper class for drawing samples from a TruncatedGaussian. More... | |
struct | UnitSystem |
A simple struct that combines a Wcs and a PhotoCalib. More... | |
class | UnitTransformedLikelihood |
A concrete Likelihood class that does not require its parameters and data to be in the same UnitSystem. More... | |
class | UnitTransformedLikelihoodControl |
Control object used to initialize a UnitTransformedLikelihood. More... | |
Typedefs | |
typedef float | Pixel |
Typedefs to be used for pixel values. More... | |
typedef double | Scalar |
Typedefs to be used for probability and parameter values. More... | |
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > | Matrix |
typedef Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > | Vector |
typedef afw::table::Key< Scalar > | ScalarKey |
typedef afw::table::Key< afw::table::Array< Scalar > > | ArrayKey |
typedef std::vector< std::shared_ptr< Model > > | ModelVector |
Functions | |
void | solveTrustRegion (ndarray::Array< Scalar, 1, 1 > const &x, ndarray::Array< Scalar const, 2, 1 > const &F, ndarray::Array< Scalar const, 1, 1 > const &g, double r, double tolerance) |
Solve a symmetric quadratic matrix equation with a ball constraint. More... | |
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,Eigen::Dynamic> lsst::meas::modelfit::Matrix |
typedef float lsst::meas::modelfit::Pixel |
Typedefs to be used for pixel values.
typedef double lsst::meas::modelfit::Scalar |
typedef Eigen::Matrix<Scalar,Eigen::Dynamic,1> lsst::meas::modelfit::Vector |
void lsst::meas::modelfit::solveTrustRegion | ( | ndarray::Array< Scalar, 1, 1 > const & | x, |
ndarray::Array< Scalar const, 2, 1 > const & | F, | ||
ndarray::Array< Scalar const, 1, 1 > const & | g, | ||
double | r, | ||
double | tolerance | ||
) |
Solve a symmetric quadratic matrix equation with a ball constraint.
This computes a near-exact solution to the "trust region subproblem" necessary in trust-region-based nonlinear optimizers:
\[ \min_x{\quad g^T x + \frac{1}{2}x^T F x}\quad\quad\quad \text{s.t.} ||x|| \le r \]
The tolerance parameter sets how close to \(r\) we require the norm of the solution to be when it lies on the constraint, as a fraction of \(r\) itself.
This implementation is based on the algorithm described in Section 4.3 of "Nonlinear Optimization" by Nocedal and Wright.