LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
priors.cc
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2/*
3 * LSST Data Management System
4 * Copyright 2008-2013 LSST Corporation.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <http://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#include "pybind11/pybind11.h"
25
26#include "ndarray/pybind11.h"
27
33
34namespace py = pybind11;
35using namespace pybind11::literals;
36
37namespace lsst {
38namespace meas {
39namespace modelfit {
40namespace {
41
42static void declarePrior(py::module &mod) {
43 using PyPrior = py::class_<Prior, std::shared_ptr<Prior>>;
44 PyPrior cls(mod, "Prior");
45 cls.def("getTag", &Prior::getTag);
46 cls.def("evaluate", &Prior::evaluate, "nonlinear"_a, "amplitudes"_a);
47 cls.def("evaluateDerivatives", &Prior::evaluateDerivatives, "nonlinear"_a, "amplitudes"_a,
48 "nonlinearGradient"_a, "amplitudeGradient"_a, "nonlinearHessian"_a, "amplitudeHessian"_a,
49 "crossHessian"_a);
50 cls.def("marginalize", &Prior::marginalize, "gradient"_a, "hessian"_a, "nonlinear"_a);
51 cls.def("maximize", &Prior::maximize, "gradient"_a, "hessian"_a, "nonlinear"_a, "amplitudes"_a);
52 cls.def("drawAmplitudes", &Prior::drawAmplitudes, "gradient"_a, "hessian"_a, "nonlinear"_a, "rng"_a,
53 "amplitudes"_a, "weights"_a, "multiplyWeights"_a = false);
54}
55
56static void declareMixturePrior(py::module &mod) {
57 using Class = MixturePrior;
58 using PyClass = py::class_<Class, std::shared_ptr<Class>, Prior>;
59 PyClass cls(mod, "MixturePrior");
60 cls.def(py::init<std::shared_ptr<Mixture>, std::string const &>(), "mixture"_a, "tag"_a = "");
61 cls.def_static("getUpdateRestriction", &Class::getUpdateRestriction,
62 py::return_value_policy::reference); // returned object has static duration
63 cls.def("getMixture", &Class::getMixture);
64 // virtual methods already wrapped by Prior base class
65}
66
67static void declareSemiEmpiricalPrior(py::module &mod) {
68 using Class = SemiEmpiricalPrior;
69 using Control = SemiEmpiricalPriorControl;
70 using PyControl = py::class_<Control, std::shared_ptr<Control>>;
71 using PyClass = py::class_<Class, std::shared_ptr<Class>, Prior>;
72
73 PyControl clsControl(mod, "SemiEmpiricalPriorControl");
74 clsControl.def(py::init<>());
75 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, ellipticitySigma);
76 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, ellipticityCore);
77 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMinOuter);
78 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMinInner);
79 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMu);
80 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusSigma);
81 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusNu);
82 clsControl.def("validate", &Control::validate);
83
84 PyClass cls(mod, "SemiEmpiricalPrior");
85 cls.def(py::init<Control>(), "ctrl"_a);
86 cls.attr("Control") = clsControl;
87 // virtual methods already wrapped by Prior base class
88}
89
90static void declareSoftenedLinearPrior(py::module &mod) {
91 using Class = SoftenedLinearPrior;
92 using Control = SoftenedLinearPriorControl;
93 using PyControl = py::class_<Control, std::shared_ptr<Control>>;
94 using PyClass = py::class_<Class, std::shared_ptr<Class>, Prior>;
95
96 PyControl clsControl(mod, "SoftenedLinearPriorControl");
97 clsControl.def(py::init<>());
98 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, ellipticityMaxOuter);
99 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, ellipticityMaxInner);
100 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMinOuter);
101 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMinInner);
102 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMaxOuter);
103 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMaxInner);
104 LSST_DECLARE_CONTROL_FIELD(clsControl, Control, logRadiusMinMaxRatio);
105
106 PyClass cls(mod, "SoftenedLinearPrior");
107 cls.def(py::init<Control>(), "ctrl"_a);
108 cls.def("getControl", &Class::getControl, py::return_value_policy::copy);
109 cls.attr("Control") = clsControl;
110 // virtual methods already wrapped by Prior base class
111}
112
113PYBIND11_MODULE(priors, mod) {
114 py::module::import("lsst.meas.modelfit.mixture");
115
116 declarePrior(mod);
117 declareMixturePrior(mod);
118 declareSemiEmpiricalPrior(mod);
119 declareSoftenedLinearPrior(mod);
120}
121
122}
123}
124}
125} // namespace lsst::meas::modelfit::anonymous
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
std::string const & getTag() const
Definition: Prior.h:39
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
PYBIND11_MODULE(_cameraGeom, mod)
Definition: _cameraGeom.cc:38
py::class_< PixelAreaBoundedField, std::shared_ptr< PixelAreaBoundedField >, BoundedField > PyClass
A base class for image defects.
#define LSST_DECLARE_CONTROL_FIELD(WRAPPER, CLASS, NAME)
Macro used to wrap fields declared by LSST_CONTROL_FIELD using Pybind11.
Definition: python.h:50