LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
Prior.h
Go to the documentation of this file.
1// -*- lsst-c++ -*-
2/*
3 * LSST Data Management System
4 * Copyright 2008-2013 LSST Corporation.
5 *
6 * This product includes software developed by the
7 * LSST Project (http://www.lsst.org/).
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the LSST License Statement and
20 * the GNU General Public License along with this program. If not,
21 * see <http://www.lsstcorp.org/LegalNotices/>.
22 */
23
24#ifndef LSST_MEAS_MODELFIT_Prior_h_INCLUDED
25#define LSST_MEAS_MODELFIT_Prior_h_INCLUDED
26
27#include "lsst/base.h"
30
31namespace lsst { namespace meas { namespace modelfit {
32
36class Prior {
37public:
38
39 std::string const & getTag() const { return _tag; }
40
48 ndarray::Array<Scalar const,1,1> const & nonlinear,
49 ndarray::Array<Scalar const,1,1> const & amplitudes
50 ) const = 0;
51
67 virtual void evaluateDerivatives(
68 ndarray::Array<Scalar const,1,1> const & nonlinear,
69 ndarray::Array<Scalar const,1,1> const & amplitudes,
70 ndarray::Array<Scalar,1,1> const & nonlinearGradient,
71 ndarray::Array<Scalar,1,1> const & amplitudeGradient,
72 ndarray::Array<Scalar,2,1> const & nonlinearHessian,
73 ndarray::Array<Scalar,2,1> const & amplitudeHessian,
74 ndarray::Array<Scalar,2,1> const & crossHessian
75 ) const = 0;
76
111 Vector const & gradient, Matrix const & hessian,
112 ndarray::Array<Scalar const,1,1> const & nonlinear
113 ) const = 0;
114
128 Vector const & gradient, Matrix const & hessian,
129 ndarray::Array<Scalar const,1,1> const & nonlinear,
130 ndarray::Array<Scalar,1,1> const & amplitudes
131 ) const = 0;
132
152 virtual void drawAmplitudes(
153 Vector const & gradient, Matrix const & hessian,
154 ndarray::Array<Scalar const,1,1> const & nonlinear,
155 afw::math::Random & rng,
156 ndarray::Array<Scalar,2,1> const & amplitudes,
157 ndarray::Array<Scalar,1,1> const & weights,
158 bool multiplyWeights=false
159 ) const = 0;
160
161 virtual ~Prior() {}
162
163 // No copying
164 Prior (const Prior&) = delete;
165 Prior& operator=(const Prior&) = delete;
166
167 // No moving
168 Prior (Prior&&) = delete;
169 Prior& operator=(Prior&&) = delete;
170
171protected:
172
173 explicit Prior(std::string const & tag="") : _tag(tag) {}
174
175private:
176 std::string _tag;
177};
178
179}}} // namespace lsst::meas::modelfit
180
181#endif // !LSST_MEAS_MODELFIT_Prior_h_INCLUDED
table::Key< table::Array< double > > amplitudes
Basic LSST definitions.
A class that can be used to generate sequences of random numbers according to a number of different a...
Definition: Random.h:57
Base class for Bayesian priors.
Definition: Prior.h:36
virtual Scalar marginalize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear) const =0
Return the -log amplitude integral of the prior*likelihood product.
virtual Scalar maximize(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar, 1, 1 > const &amplitudes) const =0
Compute the amplitude vector that maximizes the prior x likelihood product.
Prior & operator=(Prior &&)=delete
virtual Scalar evaluate(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes) const =0
Evaluate the prior at the given point in nonlinear and amplitude space.
Prior & operator=(const Prior &)=delete
std::string const & getTag() const
Definition: Prior.h:39
virtual void drawAmplitudes(Vector const &gradient, Matrix const &hessian, ndarray::Array< Scalar const, 1, 1 > const &nonlinear, afw::math::Random &rng, ndarray::Array< Scalar, 2, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &weights, bool multiplyWeights=false) const =0
Draw a set of Monte Carlo amplitude vectors.
virtual void evaluateDerivatives(ndarray::Array< Scalar const, 1, 1 > const &nonlinear, ndarray::Array< Scalar const, 1, 1 > const &amplitudes, ndarray::Array< Scalar, 1, 1 > const &nonlinearGradient, ndarray::Array< Scalar, 1, 1 > const &amplitudeGradient, ndarray::Array< Scalar, 2, 1 > const &nonlinearHessian, ndarray::Array< Scalar, 2, 1 > const &amplitudeHessian, ndarray::Array< Scalar, 2, 1 > const &crossHessian) const =0
Evaluate the derivatives of the prior at the given point in nonlinear and amplitude space.
Prior(const Prior &)=delete
Prior(std::string const &tag="")
Definition: Prior.h:173
Eigen::Matrix< Scalar, Eigen::Dynamic, 1 > Vector
Definition: common.h:46
Eigen::Matrix< Scalar, Eigen::Dynamic, Eigen::Dynamic > Matrix
Definition: common.h:45
double Scalar
Typedefs to be used for probability and parameter values.
Definition: common.h:44
A base class for image defects.