LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
priorsContinued.py
Go to the documentation of this file.
1#!/usr/bin/env python
2#
3# LSST Data Management System
4# Copyright 2008-2013 LSST Corporation.
5#
6# This product includes software developed by the
7# LSST Project (http://www.lsst.org/).
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the LSST License Statement and
20# the GNU General Public License along with this program. If not,
21# see <http://www.lsstcorp.org/LegalNotices/>.
22#
23
24__all__ = ("fitMixture", "SemiEmpiricalPriorConfig",
25 "SoftenedLinearPriorControl")
26
27import numpy as np
28
29from lsst.pex.config import makeConfigClass
30from lsst.utils import continueClass
31
32from ..mixture import Mixture
33from .priors import (SemiEmpiricalPriorControl, SemiEmpiricalPrior,
34 SoftenedLinearPriorControl, SoftenedLinearPrior,
35 MixturePrior)
36
37
38SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl)
39
40SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl)
41
42
43@continueClass # noqa: F811 (FIXME: remove for py 3.8+)
44class SemiEmpiricalPrior: # noqa: F811
45
46 ConfigClass = SemiEmpiricalPriorConfig
47
48
49@continueClass # noqa: F811 (FIXME: remove for py 3.8+)
50class SoftenedLinearPrior: # noqa: F811
51
52 ConfigClass = SoftenedLinearPriorConfig
53
54
55def fitMixture(data, nComponents, minFactor=0.25, maxFactor=4.0,
56 nIterations=20, df=float("inf")):
57 """Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
58 returing a ``MixturePrior`` object.
59
60 Parameters
61 ----------
62 data : numpy.ndarray
63 array of data points to fit; shape=(N,3)
64 nComponents : int
65 number of components in the mixture distribution
66 minFactor : float
67 ellipticity variance of the smallest component in the initial mixture,
68 relative to the measured variance
69 maxFactor : float
70 ellipticity variance of the largest component in the initial mixture,
71 relative to the measured variance
72 nIterations : int
73 number of expectation-maximization update iterations
74 df : float
75 number of degrees of freedom for component Student's T distributions
76 (inf=Gaussian).
77 """
78 components = Mixture.ComponentList()
79 rMu = data[:, 2].mean()
80 rSigma = data[:, 2].var()
81 eSigma = 0.5*(data[:, 0].var() + data[:, 1].var())
82 mu = np.array([0.0, 0.0, rMu], dtype=float)
83 baseSigma = np.array([[eSigma, 0.0, 0.0],
84 [0.0, eSigma, 0.0],
85 [0.0, 0.0, rSigma]])
86 for factor in np.linspace(minFactor, maxFactor, nComponents):
87 sigma = baseSigma.copy()
88 sigma[:2, :2] *= factor
89 components.append(Mixture.Component(1.0, mu, sigma))
90 mixture = Mixture(3, components, df)
91 restriction = MixturePrior.getUpdateRestriction()
92 for i in range(nIterations):
93 mixture.updateEM(data, restriction)
94 return mixture
A weighted Student's T or Gaussian distribution used as a component in a Mixture.
Definition: Mixture.h:47
def fitMixture(data, nComponents, minFactor=0.25, maxFactor=4.0, nIterations=20, df=float("inf"))
def makeConfigClass(ctrl, name=None, base=Config, doc=None, module=None, cls=None)
Definition: wrap.py:56