LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
psfex.py
Go to the documentation of this file.
1import os
2import re
3
4import numpy as np
5from astropy.io import fits
6try:
7 import matplotlib.pyplot as plt
8except ImportError:
9 plt = None
10
11import lsst.geom as geom
12import lsst.afw.geom as afwGeom
13from lsst.afw.fits import readMetadata
14import lsst.afw.image as afwImage
15import lsst.afw.table as afwTable
16import lsst.afw.display as afwDisplay
17from . import psfexLib
18
19afwDisplay.setDefaultMaskTransparency(75)
20
21
22def compute_fwhmrange(fwhm, maxvar, minin, maxin, plot=dict(fwhmHistogram=False)):
23 """Compute the FWHM range associated to a series of FWHM measurements.
24 AUTHOR E. Bertin (IAP, Leiden observatory & ESO)
25 VERSION 20/03/2008
26
27 Parameters
28 ----------
29 fwhm: iterable of `float`
30 Iterable of full width half-maxima.
31 maxvar: `float`
32 Maximum allowed FWHM variation.
33 minin: `float`
34 Minimum allowed FWHM.
35 maxin: `float`
36 Maximum allowed FWHM.
37 plot: `dict`, optional
38 Dict of plotting options.
39
40 Returns
41 -------
42 fmin: `float`
43 FWHM mode.
44 minout: `float`
45 Lower FWHM range.
46 maxout: `float`
47 Upper FWHM range.
48 """
49
50 nfwhm = len(fwhm)
51 fwhm.sort()
52
53 # Find the mode
54 nw = nfwhm//4
55 if nw < 4:
56 nw = 1
57 dfmin = psfexLib.BIG
58 fmin = 0.0
59 for i in range(nfwhm - nw):
60 df = fwhm[i + nw] - fwhm[i]
61 if df < dfmin:
62 dfmin = df
63 fmin = (fwhm[i + nw] + fwhm[i])/2.0
64
65 if nfwhm < 2:
66 fmin = fwhm[0]
67
68 dfmin = (maxvar + 1.0)**0.3333333
69 minout = fmin/dfmin if dfmin > 0.0 else 0.0
70 if minout < minin:
71 minout = minin
72
73 maxout = fmin*dfmin**2
74 if maxout > maxin:
75 maxout = maxin
76
77 if plt and plot.get("fwhmHistogram"):
78 plt.clf()
79 plt.hist(fwhm, nfwhm//10 + 1, normed=1, facecolor='g', alpha=0.75)
80 plt.xlabel("FWHM")
81 plt.axvline(fmin, color='red')
82 [plt.axvline(_, color='blue') for _ in (minout, maxout)]
83
84 input("Continue? ")
85
86 return fmin, minout, maxout
87
88
89def select_candidates(set, prefs, frmin, frmax,
90 flags, flux, fluxerr, rmsSize, elong, vignet,
91 plot=dict(), title=""):
92 maxbad = prefs.getBadpixNmax()
93 maxbadflag = prefs.getBadpixFlag()
94 maxelong = (prefs.getMaxellip() + 1.0)/(1.0 - prefs.getMaxellip()) if prefs.getMaxellip() < 1.0 else 100.0
95 minsn = prefs.getMinsn()
96
97 sn = flux/np.where(fluxerr > 0, fluxerr, 1)
98 sn[fluxerr <= 0] = -psfexLib.BIG
99 # ---- Apply some selection over flags, fluxes...
100 plotFlags = plot.get("showFlags") if plt else False
101 plotRejection = plot.get("showRejection") if plt else False
102
103 bad = flags & prefs.getFlagMask() != 0
104 set.setBadFlags(int(sum(bad != 0)))
105
106 if plotRejection:
107 selectionVectors = []
108 selectionVectors.append((bad, "flags %d" % sum(bad != 0)))
109
110 dbad = sn < minsn
111 set.setBadSN(int(sum(dbad)))
112 bad = np.logical_or(bad, dbad)
113 if plotRejection:
114 selectionVectors.append((dbad, "S/N %d" % sum(dbad)))
115
116 dbad = rmsSize < frmin
117 set.setBadFrmin(int(sum(dbad)))
118 bad = np.logical_or(bad, dbad)
119 if plotRejection:
120 selectionVectors.append((dbad, "frmin %d" % sum(dbad)))
121
122 dbad = rmsSize > frmax
123 set.setBadFrmax(int(sum(dbad)))
124 bad = np.logical_or(bad, dbad)
125 if plotRejection:
126 selectionVectors.append((dbad, "frmax %d" % sum(dbad)))
127
128 dbad = elong > maxelong
129 set.setBadElong(int(sum(dbad)))
130 bad = np.logical_or(bad, dbad)
131 if plotRejection:
132 selectionVectors.append((dbad, "elong %d" % sum(dbad)))
133
134 # -- ... and check the integrity of the sample
135 if maxbadflag:
136 nbad = np.array([(v <= -psfexLib.BIG).sum() for v in vignet])
137 dbad = nbad > maxbad
138 set.setBadPix(int(sum(dbad)))
139 bad = np.logical_or(bad, dbad)
140 if plotRejection:
141 selectionVectors.append((dbad, "badpix %d" % sum(dbad)))
142
143 good = np.logical_not(bad)
144 if plotFlags or plotRejection:
145 imag = -2.5*np.log10(flux)
146 plt.clf()
147
148 alpha = 0.5
149 if plotFlags:
150 labels = getFlags()
151
152 isSet = np.where(flags == 0x0)[0]
153 plt.plot(imag[isSet], rmsSize[isSet], 'o', alpha=alpha, label="good")
154
155 for i in range(16):
156 mask = 1 << i
157 if mask & prefs.getFlagMask():
158 isSet = np.where(np.bitwise_and(flags, mask))[0]
159 if isSet.any():
160 plt.plot(imag[isSet], rmsSize[isSet], 'o', alpha=alpha, label=labels[mask])
161 else:
162 for bad, label in selectionVectors:
163 plt.plot(imag[bad], rmsSize[bad], 'o', alpha=alpha, label=label)
164
165 plt.plot(imag[good], rmsSize[good], 'o', color="black", label="selected")
166 [plt.axhline(_, color='red') for _ in [frmin, frmax]]
167 plt.xlim(np.median(imag[good]) + 5*np.array([-1, 1]))
168 plt.ylim(-0.1, 2*frmax)
169 plt.legend(loc=2)
170 plt.xlabel("Instrumental Magnitude")
171 plt.ylabel("rmsSize")
172 plt.title("%s %d selected" % (title, sum(good)))
173
174 input("Continue? ")
175
176 return good
177
178
179def showPsf(psf, set, ext=None, wcsData=None, trim=0, nspot=5,
180 diagnostics=False, outDir="", frame=None, title=None):
181 """Show a PSF on display (e.g., ds9)
182 """
183
184 if ext is not None:
185 psf = psf[ext]
186
187 if wcsData:
188 if ext is not None:
189 wcsData = wcsData[ext]
190 wcs, naxis1, naxis2 = wcsData
191 else:
192 wcs, naxis1, naxis2 = None, None, None
193
194 naxis = [naxis1, naxis2]
195 for i in range(2):
196 if naxis[i] is None:
197 # cmin, cmax are the range of input star positions
198 cmin, cmax = [set.getContextOffset(i) + d*set.getContextScale(i) for d in (-0.5, 0.5)]
199 naxis[i] = cmax + cmin # a decent guess
200
201 if naxis[0] > naxis[1]:
202 nx, ny = int(nspot*naxis[0]/float(naxis[1]) + 0.5), nspot
203 else:
204 nx, ny = nspot, int(nspot*naxis[1]/float(naxis[0]) + 0.5)
205
206 mos = afwDisplay.utils.Mosaic(gutter=2, background=0.02)
207
208 xpos, ypos = np.linspace(0, naxis[0], nx), np.linspace(0, naxis[1], ny)
209 for y in ypos:
210 for x in xpos:
211 psf.build(x, y)
212
213 im = afwImage.ImageF(*psf.getLoc().shape)
214 im.getArray()[:] = psf.getLoc()
215 im /= float(im.getArray().max())
216 if trim:
217 if trim > im.getHeight()//2:
218 trim = im.getHeight()//2
219
220 im = im[trim:-trim, trim:-trim]
221
222 mos.append(im)
223
224 mosaic = mos.makeMosaic(mode=nx)
225 if frame is not None:
226 afwDisplay.Display(frame=frame).mtv(mosaic, title=title)
227 #
228 # Figure out the WCS for the mosaic
229 #
230 pos = []
231 pos.append([geom.PointD(0, 0), wcs.pixelToSky(geom.PointD(0, 0))])
232 pos.append([geom.PointD(*mosaic.getDimensions()), wcs.pixelToSky(geom.PointD(naxis1, naxis2))])
233
234 CD = []
235 for i in range(2):
236 delta = pos[1][1][i].asDegrees() - pos[0][1][i].asDegrees()
237 CD.append(delta/(pos[1][0][i] - pos[0][0][i]))
238 CD = np.array(CD)
239 CD.shape = (2, 2)
240 mosWcs = afwGeom.makeSkyWcs(crval=pos[0][0], crpix=pos[0][1], cdMatrix=CD)
241
242 if ext is not None:
243 title = "%s-%d" % (title, ext)
244
245 if frame is not None:
246 afwDisplay.Display(frame=frame).mtv(mosaic, title=title, wcs=mosWcs)
247
248 if diagnostics:
249 outFile = "%s-mod.fits" % title
250 if outDir:
251 outFile = os.path.join(outDir, outFile)
252 mosaic.writeFits(outFile, mosWcs.getFitsMetadata())
253
254 mos = afwDisplay.utils.Mosaic(gutter=4, background=0.002)
255 for i in range(set.getNsample()):
256 s = set.getSample(i)
257 if ext is not None and s.getExtindex() != ext:
258 continue
259
260 smos = afwDisplay.utils.Mosaic(gutter=2, background=-0.003)
261 for func in [s.getVig, s.getVigResi]:
262 arr = func()
263 if func == s.getVig:
264 norm = float(arr.max()) if True else s.getNorm()
265
266 arr /= norm
267 im = afwImage.ImageF(*arr.shape)
268 im.getArray()[:] = arr
269 smos.append(im)
270
271 mos.append(smos.makeMosaic(mode="x"))
272
273 mosaic = mos.makeMosaic(title=title)
274
275 if frame is not None:
276 afwDisplay.Display(frame=frame + 1).mtv(mosaic, title=title)
277
278 if diagnostics:
279 outFile = "%s-psfstars.fits" % title
280 if outDir:
281 outFile = os.path.join(outDir, outFile)
282
283 mosaic.writeFits(outFile)
284
285
286def getFlags(tab=None):
287 flagKeys = [
288 "base_PixelFlags_flag_edge",
289 # "base_PixelFlags_flag_interpolated",
290 # "base_PixelFlags_flag_interpolatedCenter",
291 # "base_PixelFlags_flag_saturated",
292 "base_PixelFlags_flag_saturatedCenter",
293 # "base_PixelFlags_flag_cr",
294 "base_PixelFlags_flag_crCenter",
295 "base_PixelFlags_flag_bad",
296 "base_PsfFlux_flag",
297 "parent",
298 ]
299
300 if tab is None:
301 flags = {}
302 for i, k in enumerate(flagKeys):
303 flags[1 << i] = re.sub(r"\_flag", "",
304 re.sub(r"^base\_", "", re.sub(r"^base\_PixelFlags\_flag\_", "", k)))
305 else:
306 flags = 0
307 for i, k in enumerate(flagKeys):
308 if k == "parent":
309 try:
310 isSet = tab.get("deblend_nChild") > 0
311 except KeyError:
312 isSet = 0
313 else:
314 isSet = tab.get(k)
315 flags = np.bitwise_or(flags, np.where(isSet, 1 << i, 0))
316
317 return flags
318
319
320def guessCalexp(fileName):
321 for guess in [
322 re.sub("/src", r"", fileName),
323 re.sub("(SRC([^.]+))", r"CORR\2-exp", fileName),
324 ]:
325 if guess != fileName and os.path.exists(guess):
326 return guess
327
328 raise RuntimeError("Unable to find a calexp to go with %s" % fileName)
329
330
331def makeitLsst(prefs, context, saveWcs=False, plot=dict()):
332 """This is the python wrapper that reads lsst tables
333 """
334 # Create an array of PSFs (one PSF for each extension)
335 if prefs.getVerboseType() != prefs.QUIET:
336 print("----- %d input catalogues:" % prefs.getNcat())
337
338 if saveWcs: # only needed for making plots
339 wcssList = []
340
341 fields = psfexLib.vectorField()
342 for cat in prefs.getCatalogs():
343 field = psfexLib.Field(cat)
344 wcss = []
345 wcssList.append(wcss)
346 with fits.open(cat):
347 # Hack: I want the WCS so I'll guess where the calexp is to be
348 # found
349 calexpFile = guessCalexp(cat)
350 md = readMetadata(calexpFile)
351 wcs = afwGeom.makeSkyWcs(md)
352
353 if not wcs:
354 cdMatrix = np.array([1.0, 0.0, 0.0, 1.0])
355 cdMatrix.shape = (2, 2)
356 wcs = afwGeom.makeSkyWcs(crpix=geom.PointD(0, 0),
357 crval=geom.SpherePoint(0.0, 0.0, geom.degrees),
358 cdMatrix=cdMatrix)
359
360 naxis1, naxis2 = md.getScalar("NAXIS1"), md.getScalar("NAXIS2")
361 # Find how many rows there are in the catalogue
362 md = readMetadata(cat)
363
364 field.addExt(wcs, naxis1, naxis2, md.getScalar("NAXIS2"))
365 if saveWcs:
366 wcss.append((wcs, naxis1, naxis2))
367
368 field.finalize()
369 fields.append(field)
370
371 fields[0].getNext() # number of extensions
372
373 prefs.getPsfStep()
374
375 sets = psfexLib.vectorSet()
376 for set in load_samplesLsst(prefs, context, plot=plot):
377 sets.append(set)
378
379 psfexLib.makeit(fields, sets)
380
381 ret = [[f.getPsfs() for f in fields], sets]
382 if saveWcs:
383 ret.append(wcssList)
384
385 return ret
386
387
388def read_samplesLsst(prefs, set, filename, frmin, frmax, ext, next, catindex, context, pcval, nobj,
389 plot=dict(showFlags=False, showRejection=False)):
390 # allocate a new set iff set is None
391 if not set:
392 set = psfexLib.Set(context)
393
394 cmin, cmax = None, None
395 if set.getNcontext():
396 cmin = np.empty(set.getNcontext())
397 cmax = np.empty(set.getNcontext())
398 for i in range(set.getNcontext()):
399 if set.getNsample():
400 cmin[i] = set.getContextOffset(i) - set.getContextScale(i)/2.0
401 cmax[i] = cmin[i] + set.getContextScale(i)
402 else:
403 cmin[i] = psfexLib.BIG
404 cmax[i] = -psfexLib.BIG
405 #
406 # Read data
407 #
408 tab = afwTable.SourceCatalog.readFits(filename)
409
410 centroid = tab.getCentroidDefinition()
411 xm = tab.get("%s.x" % centroid)
412 ym = tab.get("%s.y" % centroid)
413
414 shape = tab.getShapeDefinition()
415 ixx = tab.get("%s.xx" % shape)
416 iyy = tab.get("%s.yy" % shape)
417
418 rmsSize = np.sqrt(0.5*(ixx + iyy))
419 elong = 0.5*(ixx - iyy)/(ixx + iyy)
420
421 flux = tab.get(prefs.getPhotfluxRkey())
422 fluxErr = tab.get(prefs.getPhotfluxerrRkey())
423 flags = getFlags(tab)
424
425 #
426 # Now the VIGNET data
427 #
428 vigw, vigh = 35, 35 # [prefs.getPsfsize()[i] for i in range(2)]
429 if set.empty():
430 set.setVigSize(vigw, vigh)
431
432 vignet = np.empty(nobj*vigw*vigh, "float32").reshape(nobj, vigw, vigh)
433
434 # Hack: I want the WCS so I'll guess where the calexp is to be found
435 calexpFile = guessCalexp(filename)
436 mi = afwImage.MaskedImageF(calexpFile)
437 backnoise2 = np.median(mi.getVariance().getArray())
438 gain = 1.0
439
440 edgeBit = [k for k, v in getFlags().items() if v == "edge"][0]
441
442 for i, xc, yc in zip(range(nobj), xm, ym):
443 try:
444 x, y = int(xc), int(yc)
445 except ValueError:
446 flags[i] |= edgeBit # mark star as bad
447
448 try:
449 pstamp = mi[x - vigw//2:x + vigw//2 + 1, y - vigh//2:y + vigh//2 + 1]
450 vignet[i] = pstamp.getImage().getArray().transpose()
451 except Exception:
452 flags[i] |= edgeBit # mark star as bad
453
454 # Try to load the set of context keys
455 pc = 0
456 contextvalp = []
457 for i, key in enumerate(context.getName()):
458 if context.getPcflag(i):
459 contextvalp.append(pcval[pc])
460 pc += 1
461 elif key[0] == ':':
462 try:
463 contextvalp.append(tab.header[key[1:]])
464 except KeyError:
465 raise RuntimeError("*Error*: %s parameter not found in the header of %s" %
466 (key[1:], filename))
467 else:
468 try:
469 contextvalp.append(tab.get(key))
470 except KeyError:
471 raise RuntimeError("*Error*: %s parameter not found in the header of %s" %
472 (key, filename))
473 set.setContextname(i, key)
474
475 # Now examine each vector of the shipment
476 good = select_candidates(set, prefs, frmin, frmax,
477 flags, flux, fluxErr, rmsSize, elong, vignet,
478 plot=plot, title="%s[%d]" % (filename, ext + 1) if next > 1 else filename)
479 #
480 # Insert the good candidates into the set
481 #
482 if not vignet.dtype.isnative:
483 # without the swap setVig fails with
484 # "ValueError: 'unaligned arrays cannot be converted to C++'"
485 vignet = vignet.byteswap()
486
487 for i in np.where(good)[0]:
488 sample = set.newSample()
489 sample.setCatindex(catindex)
490 sample.setExtindex(ext)
491
492 sample.setVig(vignet[i])
493 sample.setNorm(float(flux[i]))
494 sample.setBacknoise2(backnoise2)
495 sample.setGain(gain)
496 sample.setX(float(xm[i]))
497 sample.setY(float(ym[i]))
498 sample.setFluxrad(float(rmsSize[i]))
499
500 for j in range(set.getNcontext()):
501 sample.setContext(j, float(contextvalp[j][i]))
502
503 set.finiSample(sample, prefs.getProfAccuracy())
504
505 # ---- Update min and max
506 for j in range(set.getNcontext()):
507 cmin[j] = contextvalp[j][good].min()
508 cmax[j] = contextvalp[j][good].max()
509
510 # Update the scaling
511 if set.getNsample():
512 for i in range(set.getNcontext()):
513 set.setContextScale(i, cmax[i] - cmin[i])
514 set.setContextOffset(i, (cmin[i] + cmax[i])/2.0)
515
516 # Don't waste memory!
517 set.trimMemory()
518
519 return set
520
521
522def load_samplesLsst(prefs, context, ext=psfexLib.Prefs.ALL_EXTENSIONS, next=1, plot=dict()):
523 minsn = prefs.getMinsn()
524 maxelong = (prefs.getMaxellip() + 1.0)/(1.0 - prefs.getMaxellip()) if prefs.getMaxellip() < 1.0 else 100
525 min = prefs.getFwhmrange()[0]
526 max = prefs.getFwhmrange()[1]
527
528 filenames = prefs.getCatalogs()
529
530 ncat = len(filenames)
531 fwhmmin = np.empty(ncat)
532 fwhmmax = np.empty(ncat)
533
534 if not prefs.getAutoselectFlag():
535 fwhmmin = np.zeros(ncat) + prefs.getFwhmrange()[0]
536 fwhmmax = np.zeros(ncat) + prefs.getFwhmrange()[1]
537 fwhmmode = (fwhmmin + fwhmmax)/2.0
538 else:
539 fwhms = {}
540
541 # -- Try to estimate the most appropriate Half-light Radius range
542 # -- Get the Half-light radii
543 nobj = 0
544 for i, fileName in enumerate(filenames):
545 fwhms[i] = []
546
547 if prefs.getVerboseType() != prefs.QUIET:
548 print("Examining Catalog #%d" % (i+1))
549
550 # ---- Read input catalog
551 tab = afwTable.SourceCatalog.readFits(fileName)
552
553 # -------- Fill the FWHM array
554 shape = tab.getShapeDefinition()
555 ixx = tab.get("%s.xx" % shape)
556 iyy = tab.get("%s.yy" % shape)
557
558 rmsSize = np.sqrt(0.5*(ixx + iyy))
559 elong = 0.5*(ixx - iyy)/(ixx + iyy)
560
561 flux = tab.get(prefs.getPhotfluxRkey())
562 fluxErr = tab.get(prefs.getPhotfluxerrRkey())
563
564 flags = getFlags(tab)
565
566 good = np.logical_and(flux/fluxErr > minsn,
567 np.logical_not(flags & prefs.getFlagMask()))
568 good = np.logical_and(good, elong < maxelong)
569 fwhm = 2.0*rmsSize
570 good = np.logical_and(good, fwhm >= min)
571 good = np.logical_and(good, fwhm < max)
572 fwhms[i] = fwhm[good]
573
574 if prefs.getVarType() == prefs.VAR_NONE:
575 if nobj:
576 fwhms_all = np.empty(sum([len(f) for f in fwhms.values()]))
577 i = 0
578 for f in fwhms.values():
579 fwhms_all[i:len(f)] = f
580 i += len(f)
581 mode, min, max = compute_fwhmrange(fwhms_all, prefs.getMaxvar(),
582 prefs.getFwhmrange()[0], prefs.getFwhmrange()[1],
583 plot=plot)
584 else:
585 raise RuntimeError("No source with appropriate FWHM found!!")
586 mode = min = max = 2.35/(1.0 - 1.0/psfexLib.cvar.INTERPFAC)
587
588 fwhmmin = np.zeros(ncat) + min
589 fwhmmax = np.zeros(ncat) + max
590 fwhmmode = np.zeros(ncat) + mode
591 else:
592 fwhmmode = np.empty(ncat)
593 fwhmmin = np.empty(ncat)
594 fwhmmax = np.empty(ncat)
595
596 for i in range(ncat):
597 nobj = len(fwhms[i])
598 if (nobj):
599 fwhmmode[i], fwhmmin[i], fwhmmax[i] = \
600 compute_fwhmrange(fwhms[i], prefs.getMaxvar(),
601 prefs.getFwhmrange()[0], prefs.getFwhmrange()[1], plot=plot)
602 else:
603 raise RuntimeError("No source with appropriate FWHM found!!")
604 fwhmmode[i] = fwhmmin[i] = fwhmmax[i] = 2.35/(1.0 - 1.0/psfexLib.cvar.INTERPFAC)
605
606 # Read the samples
607 mode = psfexLib.BIG # mode of FWHM distribution
608
609 sets = []
610 for i, fileName in enumerate(filenames):
611 set = None
612 for ext in range(next):
613 set = read_samplesLsst(prefs, set, fileName, fwhmmin[i]/2.0, fwhmmax[i]/2.0,
614 ext, next, i, context,
615 context.getPc(i) if context.getNpc() else None, nobj, plot=plot)
616
617 if fwhmmode[i] < mode:
618 mode = fwhmmode[i]
619
620 set.setFwhm(mode)
621
622 if prefs.getVerboseType() != prefs.QUIET:
623 if set.getNsample():
624 print("%d samples loaded." % set.getNsample())
625 else:
626 raise RuntimeError("No appropriate source found!!")
627
628 sets.append(set)
629
630 return sets
std::vector< SchemaItem< Flag > > * items
int min
int max
Point in an unspecified spherical coordinate system.
Definition: SpherePoint.h:57
def mtv(data, frame=None, title="", wcs=None, *args, **kwargs)
Definition: ds9.py:92
std::shared_ptr< daf::base::PropertyList > readMetadata(std::string const &fileName, int hdu=DEFAULT_HDU, bool strip=false)
Read FITS header.
Definition: fits.cc:1676
std::shared_ptr< SkyWcs > makeSkyWcs(daf::base::PropertySet &metadata, bool strip=false)
Construct a SkyWcs from FITS keywords.
Definition: SkyWcs.cc:521
Backwards-compatibility support for depersisting the old Calib (FluxMag0/FluxMag0Err) objects.
def makeitLsst(prefs, context, saveWcs=False, plot=dict())
Definition: psfex.py:331
def compute_fwhmrange(fwhm, maxvar, minin, maxin, plot=dict(fwhmHistogram=False))
Definition: psfex.py:22
def showPsf(psf, set, ext=None, wcsData=None, trim=0, nspot=5, diagnostics=False, outDir="", frame=None, title=None)
Definition: psfex.py:180
def select_candidates(set, prefs, frmin, frmax, flags, flux, fluxerr, rmsSize, elong, vignet, plot=dict(), title="")
Definition: psfex.py:91
def load_samplesLsst(prefs, context, ext=psfexLib.Prefs.ALL_EXTENSIONS, next=1, plot=dict())
Definition: psfex.py:522
def read_samplesLsst(prefs, set, filename, frmin, frmax, ext, next, catindex, context, pcval, nobj, plot=dict(showFlags=False, showRejection=False))
Definition: psfex.py:389