LSST Applications g0b6bd0c080+a72a5dd7e6,g1182afd7b4+2a019aa3bb,g17e5ecfddb+2b8207f7de,g1d67935e3f+06cf436103,g38293774b4+ac198e9f13,g396055baef+6a2097e274,g3b44f30a73+6611e0205b,g480783c3b1+98f8679e14,g48ccf36440+89c08d0516,g4b93dc025c+98f8679e14,g5c4744a4d9+a302e8c7f0,g613e996a0d+e1c447f2e0,g6c8d09e9e7+25247a063c,g7271f0639c+98f8679e14,g7a9cd813b8+124095ede6,g9d27549199+a302e8c7f0,ga1cf026fa3+ac198e9f13,ga32aa97882+7403ac30ac,ga786bb30fb+7a139211af,gaa63f70f4e+9994eb9896,gabf319e997+ade567573c,gba47b54d5d+94dc90c3ea,gbec6a3398f+06cf436103,gc6308e37c7+07dd123edb,gc655b1545f+ade567573c,gcc9029db3c+ab229f5caf,gd01420fc67+06cf436103,gd877ba84e5+06cf436103,gdb4cecd868+6f279b5b48,ge2d134c3d5+cc4dbb2e3f,ge448b5faa6+86d1ceac1d,gecc7e12556+98f8679e14,gf3ee170dca+25247a063c,gf4ac96e456+ade567573c,gf9f5ea5b4d+ac198e9f13,gff490e6085+8c2580be5c,w.2022.27
LSST Data Management Base Package
selectImages.py
Go to the documentation of this file.
2# LSST Data Management System
3# Copyright 2008, 2009, 2010 LSST Corporation.
4#
5# This product includes software developed by the
6# LSST Project (http://www.lsst.org/).
7#
8# This program is free software: you can redistribute it and/or modify
9# it under the terms of the GNU General Public License as published by
10# the Free Software Foundation, either version 3 of the License, or
11# (at your option) any later version.
12#
13# This program is distributed in the hope that it will be useful,
14# but WITHOUT ANY WARRANTY; without even the implied warranty of
15# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16# GNU General Public License for more details.
17#
18# You should have received a copy of the LSST License Statement and
19# the GNU General Public License along with this program. If not,
20# see <http://www.lsstcorp.org/LegalNotices/>.
21#
22import numpy as np
23import lsst.sphgeom
24import lsst.utils as utils
25import lsst.pex.config as pexConfig
26import lsst.pex.exceptions as pexExceptions
27import lsst.geom as geom
28import lsst.pipe.base as pipeBase
29from lsst.skymap import BaseSkyMap
30from lsst.daf.base import DateTime
31from lsst.utils.timer import timeMethod
32
33__all__ = ["BaseSelectImagesTask", "BaseExposureInfo", "WcsSelectImagesTask", "PsfWcsSelectImagesTask",
34 "DatabaseSelectImagesConfig", "BestSeeingSelectVisitsTask",
35 "BestSeeingQuantileSelectVisitsTask"]
36
37
38class DatabaseSelectImagesConfig(pexConfig.Config):
39 """Base configuration for subclasses of BaseSelectImagesTask that use a database"""
40 host = pexConfig.Field(
41 doc="Database server host name",
42 dtype=str,
43 )
44 port = pexConfig.Field(
45 doc="Database server port",
46 dtype=int,
47 )
48 database = pexConfig.Field(
49 doc="Name of database",
50 dtype=str,
51 )
52 maxExposures = pexConfig.Field(
53 doc="maximum exposures to select; intended for debugging; ignored if None",
54 dtype=int,
55 optional=True,
56 )
57
58
59class BaseExposureInfo(pipeBase.Struct):
60 """Data about a selected exposure
61 """
62
63 def __init__(self, dataId, coordList):
64 """Create exposure information that can be used to generate data references
65
66 The object has the following fields:
67 - dataId: data ID of exposure (a dict)
68 - coordList: ICRS coordinates of the corners of the exposure (list of lsst.geom.SpherePoint)
69 plus any others items that are desired
70 """
71 super(BaseExposureInfo, self).__init__(dataId=dataId, coordList=coordList)
72
73
74class BaseSelectImagesTask(pipeBase.Task):
75 """Base task for selecting images suitable for coaddition
76 """
77 ConfigClass = pexConfig.Config
78 _DefaultName = "selectImages"
79
80 @timeMethod
81 def run(self, coordList):
82 """Select images suitable for coaddition in a particular region
83
84 @param[in] coordList: list of coordinates defining region of interest; if None then select all images
85 subclasses may add additional keyword arguments, as required
86
87 @return a pipeBase Struct containing:
88 - exposureInfoList: a list of exposure information objects (subclasses of BaseExposureInfo),
89 which have at least the following fields:
90 - dataId: data ID dictionary
91 - coordList: ICRS coordinates of the corners of the exposure (list of lsst.geom.SpherePoint)
92 """
93 raise NotImplementedError()
94
95 def _runArgDictFromDataId(self, dataId):
96 """Extract keyword arguments for run (other than coordList) from a data ID
97
98 @return keyword arguments for run (other than coordList), as a dict
99 """
100 raise NotImplementedError()
101
102 def runDataRef(self, dataRef, coordList, makeDataRefList=True, selectDataList=[]):
103 """Run based on a data reference
104
105 This delegates to run() and _runArgDictFromDataId() to do the actual
106 selection. In the event that the selectDataList is non-empty, this will
107 be used to further restrict the selection, providing the user with
108 additional control over the selection.
109
110 @param[in] dataRef: data reference; must contain any extra keys needed by the subclass
111 @param[in] coordList: list of coordinates defining region of interest; if None, search the whole sky
112 @param[in] makeDataRefList: if True, return dataRefList
113 @param[in] selectDataList: List of SelectStruct with dataRefs to consider for selection
114 @return a pipeBase Struct containing:
115 - exposureInfoList: a list of objects derived from ExposureInfo
116 - dataRefList: a list of data references (None if makeDataRefList False)
117 """
118 runArgDict = self._runArgDictFromDataId_runArgDictFromDataId(dataRef.dataId)
119 exposureInfoList = self.runrun(coordList, **runArgDict).exposureInfoList
120
121 if len(selectDataList) > 0 and len(exposureInfoList) > 0:
122 # Restrict the exposure selection further
123 ccdKeys, ccdValues = _extractKeyValue(exposureInfoList)
124 inKeys, inValues = _extractKeyValue([s.dataRef for s in selectDataList], keys=ccdKeys)
125 inValues = set(inValues)
126 newExposureInfoList = []
127 for info, ccdVal in zip(exposureInfoList, ccdValues):
128 if ccdVal in inValues:
129 newExposureInfoList.append(info)
130 else:
131 self.log.info("De-selecting exposure %s: not in selectDataList", info.dataId)
132 exposureInfoList = newExposureInfoList
133
134 if makeDataRefList:
135 butler = dataRef.butlerSubset.butler
136 dataRefList = [butler.dataRef(datasetType="calexp",
137 dataId=expInfo.dataId,
138 ) for expInfo in exposureInfoList]
139 else:
140 dataRefList = None
141
142 return pipeBase.Struct(
143 dataRefList=dataRefList,
144 exposureInfoList=exposureInfoList,
145 )
146
147
148def _extractKeyValue(dataList, keys=None):
149 """Extract the keys and values from a list of dataIds
150
151 The input dataList is a list of objects that have 'dataId' members.
152 This allows it to be used for both a list of data references and a
153 list of ExposureInfo
154 """
155 assert len(dataList) > 0
156 if keys is None:
157 keys = sorted(dataList[0].dataId.keys())
158 keySet = set(keys)
159 values = list()
160 for data in dataList:
161 thisKeys = set(data.dataId.keys())
162 if thisKeys != keySet:
163 raise RuntimeError("DataId keys inconsistent: %s vs %s" % (keySet, thisKeys))
164 values.append(tuple(data.dataId[k] for k in keys))
165 return keys, values
166
167
168class SelectStruct(pipeBase.Struct):
169 """A container for data to be passed to the WcsSelectImagesTask"""
170
171 def __init__(self, dataRef, wcs, bbox):
172 super(SelectStruct, self).__init__(dataRef=dataRef, wcs=wcs, bbox=bbox)
173
174
176 """Select images using their Wcs
177
178 We use the "convexHull" method of lsst.sphgeom.ConvexPolygon to define
179 polygons on the celestial sphere, and test the polygon of the
180 patch for overlap with the polygon of the image.
181
182 We use "convexHull" instead of generating a ConvexPolygon
183 directly because the standard for the inputs to ConvexPolygon
184 are pretty high and we don't want to be responsible for reaching them.
185 """
186
187 def runDataRef(self, dataRef, coordList, makeDataRefList=True, selectDataList=[]):
188 """Select images in the selectDataList that overlap the patch
189
190 This method is the old entry point for the Gen2 commandline tasks and drivers
191 Will be deprecated in v22.
192
193 @param dataRef: Data reference for coadd/tempExp (with tract, patch)
194 @param coordList: List of ICRS coordinates (lsst.geom.SpherePoint) specifying boundary of patch
195 @param makeDataRefList: Construct a list of data references?
196 @param selectDataList: List of SelectStruct, to consider for selection
197 """
198 dataRefList = []
199 exposureInfoList = []
200
201 patchVertices = [coord.getVector() for coord in coordList]
202 patchPoly = lsst.sphgeom.ConvexPolygon.convexHull(patchVertices)
203
204 for data in selectDataList:
205 dataRef = data.dataRef
206 imageWcs = data.wcs
207 imageBox = data.bbox
208
209 imageCorners = self.getValidImageCornersgetValidImageCorners(imageWcs, imageBox, patchPoly, dataId=None)
210 if imageCorners:
211 dataRefList.append(dataRef)
212 exposureInfoList.append(BaseExposureInfo(dataRef.dataId, imageCorners))
213
214 return pipeBase.Struct(
215 dataRefList=dataRefList if makeDataRefList else None,
216 exposureInfoList=exposureInfoList,
217 )
218
219 def run(self, wcsList, bboxList, coordList, dataIds=None, **kwargs):
220 """Return indices of provided lists that meet the selection criteria
221
222 Parameters:
223 -----------
224 wcsList : `list` of `lsst.afw.geom.SkyWcs`
225 specifying the WCS's of the input ccds to be selected
226 bboxList : `list` of `lsst.geom.Box2I`
227 specifying the bounding boxes of the input ccds to be selected
228 coordList : `list` of `lsst.geom.SpherePoint`
229 ICRS coordinates specifying boundary of the patch.
230
231 Returns:
232 --------
233 result: `list` of `int`
234 of indices of selected ccds
235 """
236 if dataIds is None:
237 dataIds = [None] * len(wcsList)
238 patchVertices = [coord.getVector() for coord in coordList]
239 patchPoly = lsst.sphgeom.ConvexPolygon.convexHull(patchVertices)
240 result = []
241 for i, (imageWcs, imageBox, dataId) in enumerate(zip(wcsList, bboxList, dataIds)):
242 imageCorners = self.getValidImageCornersgetValidImageCorners(imageWcs, imageBox, patchPoly, dataId)
243 if imageCorners:
244 result.append(i)
245 return result
246
247 def getValidImageCorners(self, imageWcs, imageBox, patchPoly, dataId=None):
248 "Return corners or None if bad"
249 try:
250 imageCorners = [imageWcs.pixelToSky(pix) for pix in geom.Box2D(imageBox).getCorners()]
252 # Protecting ourselves from awful Wcs solutions in input images
253 self.log.debug("WCS error in testing calexp %s (%s): deselecting", dataId, e)
254 return
255
256 imagePoly = lsst.sphgeom.ConvexPolygon.convexHull([coord.getVector() for coord in imageCorners])
257 if imagePoly is None:
258 self.log.debug("Unable to create polygon from image %s: deselecting", dataId)
259 return
260
261 if patchPoly.intersects(imagePoly):
262 # "intersects" also covers "contains" or "is contained by"
263 self.log.info("Selecting calexp %s", dataId)
264 return imageCorners
265
266
267def sigmaMad(array):
268 "Return median absolute deviation scaled to normally distributed data"
269 return 1.4826*np.median(np.abs(array - np.median(array)))
270
271
272class PsfWcsSelectImagesConnections(pipeBase.PipelineTaskConnections,
273 dimensions=("tract", "patch", "skymap", "instrument", "visit"),
274 defaultTemplates={"coaddName": "deep"}):
275 pass
276
277
278class PsfWcsSelectImagesConfig(pipeBase.PipelineTaskConfig,
279 pipelineConnections=PsfWcsSelectImagesConnections):
280 maxEllipResidual = pexConfig.Field(
281 doc="Maximum median ellipticity residual",
282 dtype=float,
283 default=0.007,
284 optional=True,
285 )
286 maxSizeScatter = pexConfig.Field(
287 doc="Maximum scatter in the size residuals",
288 dtype=float,
289 optional=True,
290 )
291 maxScaledSizeScatter = pexConfig.Field(
292 doc="Maximum scatter in the size residuals, scaled by the median size",
293 dtype=float,
294 default=0.009,
295 optional=True,
296 )
297 starSelection = pexConfig.Field(
298 doc="select star with this field",
299 dtype=str,
300 default='calib_psf_used',
301 deprecated=('This field has been moved to ComputeExposureSummaryStatsTask and '
302 'will be removed after v24.')
303 )
304 starShape = pexConfig.Field(
305 doc="name of star shape",
306 dtype=str,
307 default='base_SdssShape',
308 deprecated=('This field has been moved to ComputeExposureSummaryStatsTask and '
309 'will be removed after v24.')
310 )
311 psfShape = pexConfig.Field(
312 doc="name of psf shape",
313 dtype=str,
314 default='base_SdssShape_psf',
315 deprecated=('This field has been moved to ComputeExposureSummaryStatsTask and '
316 'will be removed after v24.')
317 )
318 doLegacyStarSelectionComputation = pexConfig.Field(
319 doc="Perform the legacy star selection computations (for backwards compatibility)",
320 dtype=bool,
321 default=False,
322 deprecated=("This field is here for backwards compatibility and will be "
323 "removed after v24.")
324 )
325
326
327class PsfWcsSelectImagesTask(WcsSelectImagesTask):
328 """Select images using their Wcs and cuts on the PSF properties
329
330 The PSF quality criteria are based on the size and ellipticity residuals from the
331 adaptive second moments of the star and the PSF.
332
333 The criteria are:
334 - the median of the ellipticty residuals
335 - the robust scatter of the size residuals (using the median absolute deviation)
336 - the robust scatter of the size residuals scaled by the square of
337 the median size
338 """
339
340 ConfigClass = PsfWcsSelectImagesConfig
341 _DefaultName = "PsfWcsSelectImages"
342
343 def runDataRef(self, dataRef, coordList, makeDataRefList=True, selectDataList=[]):
344 """Select images in the selectDataList that overlap the patch and satisfy PSF quality critera.
345
346 This method is the old entry point for the Gen2 commandline tasks and drivers
347 Will be deprecated in v22.
348
349 @param dataRef: Data reference for coadd/tempExp (with tract, patch)
350 @param coordList: List of ICRS coordinates (lsst.geom.SpherePoint) specifying boundary of patch
351 @param makeDataRefList: Construct a list of data references?
352 @param selectDataList: List of SelectStruct, to consider for selection
353 """
354 result = super(PsfWcsSelectImagesTask, self).runDataRef(dataRef, coordList, makeDataRefList,
355 selectDataList)
356
357 dataRefList = []
358 exposureInfoList = []
359 for dataRef, exposureInfo in zip(result.dataRefList, result.exposureInfoList):
360 butler = dataRef.butlerSubset.butler
361 srcCatalog = butler.get('src', dataRef.dataId)
362 valid = self.isValidLegacy(srcCatalog, dataRef.dataId)
363 if valid is False:
364 continue
365
366 dataRefList.append(dataRef)
367 exposureInfoList.append(exposureInfo)
368
369 return pipeBase.Struct(
370 dataRefList=dataRefList,
371 exposureInfoList=exposureInfoList,
372 )
373
374 def run(self, wcsList, bboxList, coordList, visitSummary, dataIds=None, srcList=None, **kwargs):
375 """Return indices of provided lists that meet the selection criteria
376
377 Parameters:
378 -----------
379 wcsList : `list` of `lsst.afw.geom.SkyWcs`
380 specifying the WCS's of the input ccds to be selected
381 bboxList : `list` of `lsst.geom.Box2I`
382 specifying the bounding boxes of the input ccds to be selected
383 coordList : `list` of `lsst.geom.SpherePoint`
384 ICRS coordinates specifying boundary of the patch.
385 visitSummary : `list` of `lsst.afw.table.ExposureCatalog`
386 containing the PSF shape information for the input ccds to be selected.
387 srcList : `list` of `lsst.afw.table.SourceCatalog`, optional
388 containing the PSF shape information for the input ccds to be selected.
389 This is only used if ``config.doLegacyStarSelectionComputation`` is
390 True.
391
392 Returns:
393 --------
394 goodPsf: `list` of `int`
395 of indices of selected ccds
396 """
397 goodWcs = super(PsfWcsSelectImagesTask, self).run(wcsList=wcsList, bboxList=bboxList,
398 coordList=coordList, dataIds=dataIds)
399
400 goodPsf = []
401
402 if not self.config.doLegacyStarSelectionComputation:
403 # Check for old inputs, and give a helpful error message if so.
404 if 'nPsfStar' not in visitSummary[0].schema.getNames():
405 raise RuntimeError("Old calexps detected. "
406 "Please set config.doLegacyStarSelectionComputation=True for "
407 "backwards compatibility.")
408
409 for i, dataId in enumerate(dataIds):
410 if i not in goodWcs:
411 continue
412 if self.isValid(visitSummary, dataId["detector"]):
413 goodPsf.append(i)
414 else:
415 if dataIds is None:
416 dataIds = [None] * len(srcList)
417 for i, (srcCatalog, dataId) in enumerate(zip(srcList, dataIds)):
418 if i not in goodWcs:
419 continue
420 if self.isValidLegacy(srcCatalog, dataId):
421 goodPsf.append(i)
422
423 return goodPsf
424
425 def isValid(self, visitSummary, detectorId):
426 """Should this ccd be selected based on its PSF shape information.
427
428 Parameters
429 ----------
430 visitSummary : `lsst.afw.table.ExposureCatalog`
431 detectorId : `int`
432 Detector identifier.
433
434 Returns
435 -------
436 valid : `bool`
437 True if selected.
438 """
439 row = visitSummary.find(detectorId)
440 if row is None:
441 # This is not listed, so it must be bad.
442 self.log.warning("Removing detector %d because summary stats not available.", detectorId)
443 return False
444
445 medianE = np.sqrt(row["psfStarDeltaE1Median"]**2. + row["psfStarDeltaE2Median"]**2.)
446 scatterSize = row["psfStarDeltaSizeScatter"]
447 scaledScatterSize = row["psfStarScaledDeltaSizeScatter"]
448
449 valid = True
450 if self.config.maxEllipResidual and medianE > self.config.maxEllipResidual:
451 self.log.info("Removing visit %d detector %d because median e residual too large: %f vs %f",
452 row["visit"], detectorId, medianE, self.config.maxEllipResidual)
453 valid = False
454 elif self.config.maxSizeScatter and scatterSize > self.config.maxSizeScatter:
455 self.log.info("Removing visit %d detector %d because size scatter too large: %f vs %f",
456 row["visit"], detectorId, scatterSize, self.config.maxSizeScatter)
457 valid = False
458 elif self.config.maxScaledSizeScatter and scaledScatterSize > self.config.maxScaledSizeScatter:
459 self.log.info("Removing visit %d detector %d because scaled size scatter too large: %f vs %f",
460 row["visit"], detectorId, scaledScatterSize, self.config.maxScaledSizeScatter)
461 valid = False
462
463 return valid
464
465 def isValidLegacy(self, srcCatalog, dataId=None):
466 """Should this ccd be selected based on its PSF shape information.
467
468 This routine is only used in legacy processing (gen2 and
469 backwards compatible old calexps) and should be removed after v24.
470
471 Parameters
472 ----------
473 srcCatalog : `lsst.afw.table.SourceCatalog`
474 dataId : `dict` of dataId keys, optional.
475 Used only for logging. Defaults to None.
476
477 Returns
478 -------
479 valid : `bool`
480 True if selected.
481 """
482 mask = srcCatalog[self.config.starSelection]
483
484 starXX = srcCatalog[self.config.starShape+'_xx'][mask]
485 starYY = srcCatalog[self.config.starShape+'_yy'][mask]
486 starXY = srcCatalog[self.config.starShape+'_xy'][mask]
487 psfXX = srcCatalog[self.config.psfShape+'_xx'][mask]
488 psfYY = srcCatalog[self.config.psfShape+'_yy'][mask]
489 psfXY = srcCatalog[self.config.psfShape+'_xy'][mask]
490
491 starSize = np.power(starXX*starYY - starXY**2, 0.25)
492 starE1 = (starXX - starYY)/(starXX + starYY)
493 starE2 = 2*starXY/(starXX + starYY)
494 medianSize = np.median(starSize)
495
496 psfSize = np.power(psfXX*psfYY - psfXY**2, 0.25)
497 psfE1 = (psfXX - psfYY)/(psfXX + psfYY)
498 psfE2 = 2*psfXY/(psfXX + psfYY)
499
500 medianE1 = np.abs(np.median(starE1 - psfE1))
501 medianE2 = np.abs(np.median(starE2 - psfE2))
502 medianE = np.sqrt(medianE1**2 + medianE2**2)
503
504 scatterSize = sigmaMad(starSize - psfSize)
505 scaledScatterSize = scatterSize/medianSize**2
506
507 valid = True
508 if self.config.maxEllipResidual and medianE > self.config.maxEllipResidual:
509 self.log.info("Removing visit %s because median e residual too large: %f vs %f",
510 dataId, medianE, self.config.maxEllipResidual)
511 valid = False
512 elif self.config.maxSizeScatter and scatterSize > self.config.maxSizeScatter:
513 self.log.info("Removing visit %s because size scatter is too large: %f vs %f",
514 dataId, scatterSize, self.config.maxSizeScatter)
515 valid = False
516 elif self.config.maxScaledSizeScatter and scaledScatterSize > self.config.maxScaledSizeScatter:
517 self.log.info("Removing visit %s because scaled size scatter is too large: %f vs %f",
518 dataId, scaledScatterSize, self.config.maxScaledSizeScatter)
519 valid = False
520
521 return valid
522
523
524class BestSeeingSelectVisitsConnections(pipeBase.PipelineTaskConnections,
525 dimensions=("tract", "patch", "skymap", "band", "instrument"),
526 defaultTemplates={"coaddName": "goodSeeing"}):
527 skyMap = pipeBase.connectionTypes.Input(
528 doc="Input definition of geometry/bbox and projection/wcs for coadded exposures",
529 name=BaseSkyMap.SKYMAP_DATASET_TYPE_NAME,
530 storageClass="SkyMap",
531 dimensions=("skymap",),
532 )
533 visitSummaries = pipeBase.connectionTypes.Input(
534 doc="Per-visit consolidated exposure metadata from ConsolidateVisitSummaryTask",
535 name="visitSummary",
536 storageClass="ExposureCatalog",
537 dimensions=("instrument", "visit",),
538 multiple=True,
539 deferLoad=True
540 )
541 goodVisits = pipeBase.connectionTypes.Output(
542 doc="Selected visits to be coadded.",
543 name="{coaddName}Visits",
544 storageClass="StructuredDataDict",
545 dimensions=("instrument", "tract", "patch", "skymap", "band"),
546 )
547
548
549class BestSeeingSelectVisitsConfig(pipeBase.PipelineTaskConfig,
550 pipelineConnections=BestSeeingSelectVisitsConnections):
551 nVisitsMax = pexConfig.RangeField(
552 dtype=int,
553 doc="Maximum number of visits to select",
554 default=12,
555 min=0
556 )
557 maxPsfFwhm = pexConfig.Field(
558 dtype=float,
559 doc="Maximum PSF FWHM (in arcseconds) to select",
560 default=1.5,
561 optional=True
562 )
563 minPsfFwhm = pexConfig.Field(
564 dtype=float,
565 doc="Minimum PSF FWHM (in arcseconds) to select",
566 default=0.,
567 optional=True
568 )
569 doConfirmOverlap = pexConfig.Field(
570 dtype=bool,
571 doc="Do remove visits that do not actually overlap the patch?",
572 default=True,
573 )
574 minMJD = pexConfig.Field(
575 dtype=float,
576 doc="Minimum visit MJD to select",
577 default=None,
578 optional=True
579 )
580 maxMJD = pexConfig.Field(
581 dtype=float,
582 doc="Maximum visit MJD to select",
583 default=None,
584 optional=True
585 )
586
587
588class BestSeeingSelectVisitsTask(pipeBase.PipelineTask):
589 """Select up to a maximum number of the best-seeing visits
590
591 Don't exceed the FWHM range specified by configs min(max)PsfFwhm.
592 This Task is a port of the Gen2 image-selector used in the AP pipeline:
593 BestSeeingSelectImagesTask. This Task selects full visits based on the
594 average PSF of the entire visit.
595 """
596 ConfigClass = BestSeeingSelectVisitsConfig
597 _DefaultName = 'bestSeeingSelectVisits'
598
599 def runQuantum(self, butlerQC, inputRefs, outputRefs):
600 inputs = butlerQC.get(inputRefs)
601 quantumDataId = butlerQC.quantum.dataId
602 outputs = self.run(**inputs, dataId=quantumDataId)
603 butlerQC.put(outputs, outputRefs)
604
605 def run(self, visitSummaries, skyMap, dataId):
606 """Run task
607
608 Parameters:
609 -----------
610 visitSummary : `list`
611 List of `lsst.pipe.base.connections.DeferredDatasetRef` of
612 visitSummary tables of type `lsst.afw.table.ExposureCatalog`
613 skyMap : `lsst.skyMap.SkyMap`
614 SkyMap for checking visits overlap patch
615 dataId : `dict` of dataId keys
616 For retrieving patch info for checking visits overlap patch
617
618 Returns
619 -------
620 result : `lsst.pipe.base.Struct`
621 Result struct with components:
622
623 - `goodVisits`: `dict` with selected visit ids as keys,
624 so that it can be be saved as a StructuredDataDict.
625 StructuredDataList's are currently limited.
626 """
627
628 if self.config.doConfirmOverlap:
629 patchPolygon = self.makePatchPolygon(skyMap, dataId)
630
631 inputVisits = [visitSummary.ref.dataId['visit'] for visitSummary in visitSummaries]
632 fwhmSizes = []
633 visits = []
634 for visit, visitSummary in zip(inputVisits, visitSummaries):
635 # read in one-by-one and only once. There may be hundreds
636 visitSummary = visitSummary.get()
637
638 # mjd is guaranteed to be the same for every detector in the visitSummary.
639 mjd = visitSummary[0].getVisitInfo().getDate().get(system=DateTime.MJD)
640
641 pixToArcseconds = [vs.getWcs().getPixelScale(vs.getBBox().getCenter()).asArcseconds()
642 for vs in visitSummary]
643 # psfSigma is PSF model determinant radius at chip center in pixels
644 psfSigmas = np.array([vs['psfSigma'] for vs in visitSummary])
645 fwhm = np.nanmean(psfSigmas * pixToArcseconds) * np.sqrt(8.*np.log(2.))
646
647 if self.config.maxPsfFwhm and fwhm > self.config.maxPsfFwhm:
648 continue
649 if self.config.minPsfFwhm and fwhm < self.config.minPsfFwhm:
650 continue
651 if self.config.minMJD and mjd < self.config.minMJD:
652 self.log.debug('MJD %f earlier than %.2f; rejecting', mjd, self.config.minMJD)
653 continue
654 if self.config.maxMJD and mjd > self.config.maxMJD:
655 self.log.debug('MJD %f later than %.2f; rejecting', mjd, self.config.maxMJD)
656 continue
657 if self.config.doConfirmOverlap and not self.doesIntersectPolygon(visitSummary, patchPolygon):
658 continue
659
660 fwhmSizes.append(fwhm)
661 visits.append(visit)
662
663 sortedVisits = [ind for (_, ind) in sorted(zip(fwhmSizes, visits))]
664 output = sortedVisits[:self.config.nVisitsMax]
665 self.log.info("%d images selected with FWHM range of %d--%d arcseconds",
666 len(output), fwhmSizes[visits.index(output[0])], fwhmSizes[visits.index(output[-1])])
667
668 # In order to store as a StructuredDataDict, convert list to dict
669 goodVisits = {key: True for key in output}
670 return pipeBase.Struct(goodVisits=goodVisits)
671
672 def makePatchPolygon(self, skyMap, dataId):
673 """Return True if sky polygon overlaps visit
674
675 Parameters:
676 -----------
678 Exposure catalog with per-detector geometry
679 dataId : `dict` of dataId keys
680 For retrieving patch info
681
682 Returns:
683 --------
684 result :` lsst.sphgeom.ConvexPolygon.convexHull`
685 Polygon of patch's outer bbox
686 """
687 wcs = skyMap[dataId['tract']].getWcs()
688 bbox = skyMap[dataId['tract']][dataId['patch']].getOuterBBox()
689 sphCorners = wcs.pixelToSky(lsst.geom.Box2D(bbox).getCorners())
690 result = lsst.sphgeom.ConvexPolygon.convexHull([coord.getVector() for coord in sphCorners])
691 return result
692
693 def doesIntersectPolygon(self, visitSummary, polygon):
694 """Return True if sky polygon overlaps visit
695
696 Parameters:
697 -----------
698 visitSummary : `lsst.afw.table.ExposureCatalog`
699 Exposure catalog with per-detector geometry
700 polygon :` lsst.sphgeom.ConvexPolygon.convexHull`
701 Polygon to check overlap
702
703 Returns:
704 --------
705 doesIntersect: `bool`
706 Does the visit overlap the polygon
707 """
708 doesIntersect = False
709 for detectorSummary in visitSummary:
710 corners = [lsst.geom.SpherePoint(ra, decl, units=lsst.geom.degrees).getVector() for (ra, decl) in
711 zip(detectorSummary['raCorners'], detectorSummary['decCorners'])]
712 detectorPolygon = lsst.sphgeom.ConvexPolygon.convexHull(corners)
713 if detectorPolygon.intersects(polygon):
714 doesIntersect = True
715 break
716 return doesIntersect
717
718
719class BestSeeingQuantileSelectVisitsConfig(pipeBase.PipelineTaskConfig,
720 pipelineConnections=BestSeeingSelectVisitsConnections):
721 qMin = pexConfig.RangeField(
722 doc="Lower bound of quantile range to select. Sorts visits by seeing from narrow to wide, "
723 "and select those in the interquantile range (qMin, qMax). Set qMin to 0 for Best Seeing. "
724 "This config should be changed from zero only for exploratory diffIm testing.",
725 dtype=float,
726 default=0,
727 min=0,
728 max=1,
729 )
730 qMax = pexConfig.RangeField(
731 doc="Upper bound of quantile range to select. Sorts visits by seeing from narrow to wide, "
732 "and select those in the interquantile range (qMin, qMax). Set qMax to 1 for Worst Seeing.",
733 dtype=float,
734 default=0.33,
735 min=0,
736 max=1,
737 )
738 nVisitsMin = pexConfig.Field(
739 doc="At least this number of visits selected and supercedes quantile. For example, if 10 visits "
740 "cover this patch, qMin=0.33, and nVisitsMin=5, the best 5 visits will be selected.",
741 dtype=int,
742 default=6,
743 )
744 doConfirmOverlap = pexConfig.Field(
745 dtype=bool,
746 doc="Do remove visits that do not actually overlap the patch?",
747 default=True,
748 )
749 minMJD = pexConfig.Field(
750 dtype=float,
751 doc="Minimum visit MJD to select",
752 default=None,
753 optional=True
754 )
755 maxMJD = pexConfig.Field(
756 dtype=float,
757 doc="Maximum visit MJD to select",
758 default=None,
759 optional=True
760 )
761
762
763class BestSeeingQuantileSelectVisitsTask(BestSeeingSelectVisitsTask):
764 """Select a quantile of the best-seeing visits
765
766 Selects the best (for example, third) full visits based on the average
767 PSF width in the entire visit. It can also be used for difference imaging
768 experiments that require templates with the worst seeing visits.
769 For example, selecting the worst third can be acheived by
770 changing the config parameters qMin to 0.66 and qMax to 1.
771 """
772 ConfigClass = BestSeeingQuantileSelectVisitsConfig
773 _DefaultName = 'bestSeeingQuantileSelectVisits'
774
775 @utils.inheritDoc(BestSeeingSelectVisitsTask)
776 def run(self, visitSummaries, skyMap, dataId):
777 if self.config.doConfirmOverlap:
778 patchPolygon = self.makePatchPolygon(skyMap, dataId)
779 visits = np.array([visitSummary.ref.dataId['visit'] for visitSummary in visitSummaries])
780 radius = np.empty(len(visits))
781 intersects = np.full(len(visits), True)
782 for i, visitSummary in enumerate(visitSummaries):
783 # read in one-by-one and only once. There may be hundreds
784 visitSummary = visitSummary.get()
785 # psfSigma is PSF model determinant radius at chip center in pixels
786 psfSigma = np.nanmedian([vs['psfSigma'] for vs in visitSummary])
787 radius[i] = psfSigma
788 if self.config.doConfirmOverlap:
789 intersects[i] = self.doesIntersectPolygon(visitSummary, patchPolygon)
790 if self.config.minMJD or self.config.maxMJD:
791 # mjd is guaranteed to be the same for every detector in the visitSummary.
792 mjd = visitSummary[0].getVisitInfo().getDate().get(system=DateTime.MJD)
793 aboveMin = mjd > self.config.minMJD if self.config.minMJD else True
794 belowMax = mjd < self.config.maxMJD if self.config.maxMJD else True
795 intersects[i] = intersects[i] and aboveMin and belowMax
796
797 sortedVisits = [v for rad, v in sorted(zip(radius[intersects], visits[intersects]))]
798 lowerBound = min(int(np.round(self.config.qMin*len(visits[intersects]))),
799 max(0, len(visits[intersects]) - self.config.nVisitsMin))
800 upperBound = max(int(np.round(self.config.qMax*len(visits[intersects]))), self.config.nVisitsMin)
801
802 # In order to store as a StructuredDataDict, convert list to dict
803 goodVisits = {int(visit): True for visit in sortedVisits[lowerBound:upperBound]}
804 return pipeBase.Struct(goodVisits=goodVisits)
int min
int max
A 2-dimensional celestial WCS that transform pixels to ICRS RA/Dec, using the LSST standard for pixel...
Definition: SkyWcs.h:117
Custom catalog class for ExposureRecord/Table.
Definition: Exposure.h:311
A floating-point coordinate rectangle geometry.
Definition: Box.h:413
An integer coordinate rectangle.
Definition: Box.h:55
Point in an unspecified spherical coordinate system.
Definition: SpherePoint.h:57
Reports arguments outside the domain of an operation.
Definition: Runtime.h:57
Reports errors that are due to events beyond the control of the program.
Definition: Runtime.h:104
def __init__(self, dataId, coordList)
Definition: selectImages.py:63
def runDataRef(self, dataRef, coordList, makeDataRefList=True, selectDataList=[])
def __init__(self, dataRef, wcs, bbox)
def getValidImageCorners(self, imageWcs, imageBox, patchPoly, dataId=None)
def runDataRef(self, dataRef, coordList, makeDataRefList=True, selectDataList=[])
def run(self, wcsList, bboxList, coordList, dataIds=None, **kwargs)
ConvexPolygon is a closed convex polygon on the unit sphere.
Definition: ConvexPolygon.h:57
static ConvexPolygon convexHull(std::vector< UnitVector3d > const &points)
convexHull returns the convex hull of the given set of points if it exists and throws an exception ot...
Definition: ConvexPolygon.h:65
daf::base::PropertyList * list
Definition: fits.cc:913
daf::base::PropertySet * set
Definition: fits.cc:912
bool isValid
Definition: fits.cc:399
def run(self, coaddExposures, bbox, wcs, dataIds, **kwargs)
Definition: getTemplate.py:596