23#include <pybind11/pybind11.h>
26#include "ndarray/pybind11.h"
38void declareKdTree(lsst::utils::python::WrapperCollection &wrappers,
const std::string &suffix) {
40 py::class_<
KdTree<T>>(wrappers.module, (
"KdTree" + suffix).c_str()), [](
auto &mod,
auto &cls) {
41 cls.def(py::init<>());
42 cls.def(
"Initialize", &KdTree<T>::Initialize);
43 cls.def(
"removePoint", &KdTree<T>::removePoint);
44 cls.def(
"getData", (T(KdTree<T>::*)(int, int) const) & KdTree<T>::getData);
45 cls.def(
"getData", (ndarray::Array<T, 1, 1>(KdTree<T>::*)(int) const) & KdTree<T>::getData);
46 cls.def(
"addPoint", &KdTree<T>::addPoint);
47 cls.def(
"getNPoints", &KdTree<T>::getNPoints);
48 cls.def(
"getTreeNode", &KdTree<T>::getTreeNode);
49 cls.def(
"findNeighbors", &KdTree<T>::findNeighbors);
54void declareCovariograms(lsst::utils::python::WrapperCollection &wrappers,
const std::string &suffix) {
58 wrappers.module, (
"Covariogram" + suffix).c_str()),
59 [](
auto &mod,
auto &cls) {
60 cls.def(py::init<>());
61 cls.def(
"__call__", &Covariogram<T>::operator());
66 wrappers.module, (
"SquaredExpCovariogram" + suffix).c_str()),
67 [](
auto &mod,
auto &cls) {
68 cls.def(py::init<>());
69 cls.def(
"__call__", &SquaredExpCovariogram<T>::operator());
70 cls.def(
"setEllSquared", &SquaredExpCovariogram<T>::setEllSquared);
75 wrappers.module, (
"NeuralNetCovariogram" + suffix).c_str()),
76 [](
auto &mod,
auto &cls) {
77 cls.def(py::init<>());
78 cls.def(
"setSigma0", &NeuralNetCovariogram<T>::setSigma0);
79 cls.def(
"setSigma1", &NeuralNetCovariogram<T>::setSigma1);
84void declareGaussianProcess(lsst::utils::python::WrapperCollection &wrappers,
const std::string &suffix) {
87 [](
auto &mod,
auto &cls) {
89 cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 1, 1> const &,
90 std::shared_ptr<Covariogram<T>> const &>());
91 cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 1, 1> const &,
92 ndarray::Array<T, 1, 1> const &, ndarray::Array<T, 1, 1> const &,
93 std::shared_ptr<Covariogram<T>> const &>());
94 cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 2, 2> const &,
95 std::shared_ptr<Covariogram<T>> const &>());
96 cls.def(py::init<ndarray::Array<T, 2, 2> const &, ndarray::Array<T, 1, 1> const &,
97 ndarray::Array<T, 1, 1> const &, ndarray::Array<T, 2, 2> const &,
98 std::shared_ptr<Covariogram<T>> const &>());
100 cls.def(
"interpolate",
101 (T(GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1> const &,
103 GaussianProcess<T>::interpolate);
104 cls.def(
"interpolate",
105 (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1>,
106 ndarray::Array<T, 1, 1> const &, int) const) &
107 GaussianProcess<T>::interpolate);
108 cls.def(
"selfInterpolate",
109 (T(GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, int, int) const) &
110 GaussianProcess<T>::selfInterpolate);
111 cls.def(
"selfInterpolate",
112 (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1>, int,
114 GaussianProcess<T>::selfInterpolate);
115 cls.def(
"setLambda", &GaussianProcess<T>::setLambda);
116 cls.def(
"setCovariogram", &GaussianProcess<T>::setCovariogram);
117 cls.def(
"addPoint", (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1> const &, T)) &
118 GaussianProcess<T>::addPoint);
119 cls.def(
"addPoint", (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1> const &,
120 ndarray::Array<T, 1, 1> const &)) &
121 GaussianProcess<T>::addPoint);
122 cls.def(
"batchInterpolate",
123 (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>, ndarray::Array<T, 1, 1>,
124 ndarray::Array<T, 2, 2> const &) const) &
125 GaussianProcess<T>::batchInterpolate);
126 cls.def(
"batchInterpolate",
127 (void (GaussianProcess<T>::*)(ndarray::Array<T, 1, 1>,
128 ndarray::Array<T, 2, 2> const &) const) &
129 GaussianProcess<T>::batchInterpolate);
130 cls.def(
"batchInterpolate",
131 (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>, ndarray::Array<T, 2, 2>,
132 ndarray::Array<T, 2, 2> const &) const) &
133 GaussianProcess<T>::batchInterpolate);
134 cls.def(
"batchInterpolate",
135 (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>,
136 ndarray::Array<T, 2, 2> const &) const) &
137 GaussianProcess<T>::batchInterpolate);
138 cls.def(
"setKrigingParameter", &GaussianProcess<T>::setKrigingParameter);
139 cls.def(
"removePoint", &GaussianProcess<T>::removePoint);
140 cls.def(
"getNPoints", &GaussianProcess<T>::getNPoints);
142 (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>, ndarray::Array<T, 1, 1>,
143 ndarray::Array<int, 1, 1>) const) &
144 GaussianProcess<T>::getData);
146 (void (GaussianProcess<T>::*)(ndarray::Array<T, 2, 2>, ndarray::Array<T, 2, 2>,
147 ndarray::Array<int, 1, 1>) const) &
148 GaussianProcess<T>::getData);
154 declareCovariograms<double>(wrappers,
"D");
155 declareGaussianProcess<double>(wrappers,
"D");
156 declareKdTree<double>(wrappers,
"D");
The parent class of covariogram functions for use in Gaussian Process interpolation.
Stores values of a function sampled on an image and allows you to interpolate the function to unsampl...
The data for GaussianProcess is stored in a KD tree to facilitate nearest-neighbor searches.
a Covariogram that recreates a neural network with one hidden layer and infinite units in that layer
void wrapGaussianProcess(lsst::utils::python::WrapperCollection &wrappers)